Main Menu

Scaled Composites V-Jet II
Williams International V-Jet II


On June 23, 1997, Williams International announced that its all-composite, turbofan- powered "V-JET II" light aircraft is on schedule for its July 31 fly-in and follow-on demonstration flights and exhibition at the Experimental Aircraft Association (EAA) convention at Oshkosh, July 30 to August 5, 1997. Williams also announced that, although the aircraft is early in its program of gradually expanding its flight envelope, the twin-engine "V-JET II" has already demonstrated docile stall characteristics for beginning pilots, and it has flown at 30,000 feet and at 295 knots true air speed. The Oshkosh show will be the first unveiling of the aircraft to the media and public.

Last fall under a competitive procurement program among jet engine companies, NASA selected Williams International to join NASA in a $100 million cooperative effort to revitalize the once-flourishing light aircraft industry in the United States through small turbofan engine technology. Under the program, Williams and its industry team members, which include Williams suppliers and future aircraft company customers, provide 60 percent of the resources and NASA provides 40 percent for the initial engine demonstration phase.

In 2010, Williams was in the component design phase of the engine technology program, is emphasizing low cost manufacturing processes suitable for high quantity production, and is active with key suppliers to minimize material and purchase parts costs. The new Williams engine has been named the "FJX-2."

Dr. Sam Williams, Chairman of Williams International, said, "Our objective is to replace aging, piston-powered light aircraft with all new, four-place single and six-place twin, turbofan-powered modern aircraft. This means we must develop a turbofan in the 700 lb thrust category that is very low in cost at a high production rate, is extremely quiet, is light in weight, and is very reliable."

Not intended for production, the "V-JET II" was designed by Dr. Sam Williams to demonstrate the new Williams FJX-2 high bypass ratio engine characteristics in flight over the anticipated speed and altitude range for the future "turbofan-powered, light aircraft era."

Several Williams "V-JETs" have been designed in past years by Dr. Williams with three full-scale mockups and at least a dozen small models studied to arrive at the present "V-JET II" configuration. The name, "V-JET", started with the forward-swept or V-shaped wing that continues from the early Williams designs.

The "V-JET" has the appearance of an advanced fighter with forward-swept wings. The sleek appearance is not only for marketing appeal but is for sound aerodynamic and structural reasons. The Williams design emphasized, and has now achieved for beginning pilots, very docile stall characteristics (because of the forward-swept wing) and minimum pilot action required in the event of a single engine-out condition (because of the close spacing of the engines in the unique Williams V-tail design).

Williams also revealed it contracted with Burt Rutan's Scaled Composites organization to start with the Williams preliminary design, to conduct the V-JET II" detailed design and analysis, and to manufacture the prototype "V-JET II" (that will fly in to the Oshkosh show). According to Dr. Williams, "Burt Rutan and his team have made major improvements to this design and have introduced into this prototype many new, exciting manufacturing processes." Flight testing is being done by Scaled Composites'; Doug Shane, acting as Chief Pilot of the program; Matt Gionta, Project Engineer; and Burt Rutan.

The aircraft at Oshkosh this year will be powered by two existing low bypass ratio, 550 lb thrust, FJX-1 turbofan engines developed previously by Williams, These interim engines are being used to check out the aircraft's performance and systems prior to installation of the new high bypass ratio, FJX-2 engines being developed in cooperation with NASA. The new engines are to be installed during the fourth year of the NASA/Williams program and demonstrated at Oshkosh during the year 2000.

According to Williams, the "V-JET II" will be used primarily to demonstrate the new turbofan engines over a range of flight speeds and altitudes that are expected to be required in future turbofan-powered light aircraft. Installation characteristics, engine performance data, noise levels, exhaust emissions, and flight parameters will be reviewed with the aircraft companies that are participating in the program as members of the NASA/Williams General Aviation Propulsion (GAP) team.

Another purpose of the "V-JET II" flight demonstrations will be to stimulate interest on the part of aircraft companies in designing and developing production aircraft utilizing this new propulsion technology. Williams said, "When the public views the 3800 lb "V-JET II" powered with the existing small turbofan engines, the interest will begin to build. However, later in the program when they view this sleek aircraft powered with extremely quiet, very low cost, light weight, high bypass ration turbofans, the potential for a revival of the light aircraft industry through turbofan power should certainly be underway. I believe every light aircraft pilot dreams of being a jet pilot. This low cost turbofan technology can make this a reality."

NASA partnered with the general aviation industry in introducing the V-JET II, a turbofan-powered jet. NASA awarded Williams International a 37 million dollar developmental grant to design and build such a small jet engine.
Burt Rutan and his Scaled Composites were contracted to build the V-JET II. While the overall configuration had been created by Sam Williams, it was up to Burt and his staff to do the detail design work and then execute it in the new, composite construction method Scaled Composites had developed.
A the time of its first flight on April 13,1997, as a five seat jet, the VJET II was powered by two Williams International FJX-1 turbofan engines.
Engines: two Williams International FJX-1 turbofan
Span: 35.3 ft
Length 31.1 ft
Height: 9.8 ft
Max TO Weight: 3,800 lb
Empty Weight: 2,200 lb
Take off Distance 5000 ft / IS A (25°C): 3,000 ft
Take off Distance SL / std day: 2,300 ft
Climb rate (SL): 3,200 ft/min
Time to climb: 8 min to 18,000 ft
High speed cruise: 370 knts
Range - max fuel: 2600 miles
Range loaded: 1800 miles
Seating: 6



Copyright © 2020 all-aero. All Rights Reserved.
Joomla! is Free Software released under the GNU General Public License.