Main Menu

Sukhoi T-10 / Su-27 Flanker / Su-30 / Su-32 / Su-33 / Su-34 / Su-35 / Su-37

su-27-2


The Su-27 was designed by Sukhoi OKB as a heavy fighter for the Soviet Air Force (Voenno-Vozdushmiy Sily - VVS) and National (Homeland) Air Defense Forces (Protivo-Vozdushnoi Oborony - PVO) to regain air superiority over the F-15 Eagle operated by the US Air Force. In fact, the requirements were based on the performance of the F-15 adding ten percent. The Sukhoi design fulfilled the requirements and beyond.

The main feature for the success of the Su-27 design is its aerodynamic configuration, known as 'integrated aerodynamic concept' by its designers. This configuration is one with extremely blended wing and fuselage. The low-aspect ratio trapezoidal midwing is fitted with large leading-edge root extensions (LERX) and blending into the fuselage creating a single lifting body.

The aircraft has a near-zero static stability and thus require a fly-by-wire system. The SDU-10 pitch-only fly-by-wire system controls the pitch of the aircraft to ensure stability and controllability for the pilot, increase aerodynamic performance, limit overload and angle of attack when needed and decrease the airframe aerodynamic load.

Two AL-31F afterburning turbofans are placed in seperate, widely spaced engine nacelles that are mounted under the lifting body. The air intakes are fitted with variable ramps.

The Su-27 has twin vertical fins fitted on the outer sides of the fuselage and twin central fins underneath. The airbrake is placed in the center of the mid-section of the aircraft behind the cockpit. The tricycle landing gear of Su-27 and Su-27UB has a single wheel on each strut. The nose wheel is fitted with a mudguard to protect against foreign object damage (FOD).

 

 Suk-Su27-01
Su-27

 

The basic Su-27 is fitted with the SUV-27 fire control system, which incorporates the RLPK-27 radar sighting system, OEPS-27 electro-optical sighting system, SEI-31 integrated indication system, IFF interrogator and built-in test system. The fire control system in integrated with the PNK-10 flight navigation system, radio command link, IFF system, data transmission equipment and EW self-defence system.

The RLPK-27 system and is controlled by the Ts-100 digital computer and includes the N001 pulse-Doppler lookdown-capable radar with a range of 80-100 km in the front hemisphere and 30-40 km in the rear hemispehere for a fighter-sized target. It can simultaneously track up to ten aerial targets in track-while-scan mode and provide interception of the top priority target.

The OEPS-27 electro-optical sighting system consist of the OLS-27 infrared/laser search-and-track system (IRST) and the Shchel-3UM helmet-mounted target designator and is controlled by the Ts-100 digital computer. The OLS-27 sensor is placed forward of the cockpit canopy in the centre. The system acquires and tracks aerial targets by their thermal signatures. The helmet-mounted sight and the laser range finder of the IRST can also be used to visually acquire and determine coordinates of air and surface targets.

The SEI-31 integrated indication system provides flight, navigation and sighting data on the ILS-31 head-up display (HUD) and CRT. The EW self-defence systems provides warning to the crew when illuminated by enemy radar and employs both passive and active countermeasures. The aircraft is equipped with the SPO-15 Beryoza RWR and APP-50 IR decoy dispenser. Chaff dispensers are placed in the tail section between the engine nozels. In addition, the aircraft can carry the Sorbtsiya active ECM pods on its wingtips.

su-27-3


The cockpit is fitted with the K-36DM Series 2 ejection seat. The seat-back is being inclined at an angle of 17 degrees. In the two-seat Su-27UB version, the seats are placed in tandem with the rear-seat being elevated to ensure good forward vision. The basic Su-27 cockpit layout consist of analogue instruments, HUD and CRT display to display data from radar and electro-optical sight (IRST). On both sides of the HUD control panel, there are sensors for the helmet-mounted target designator system. On the right side below the CRT display the RWR indicator is placed.

The Su-27 is fitted with one GSh-301 automatic single-barrel 30mm cannon fitted inside the starboard wing LERX. It can be armed with up to 150 high explosive incendiary or armour piercing tracer rounds.
The basic Su-27's primary armament consists up to six R-27R/ER semi-active radar homer or R-27T/ET heatseeking homer medium range air-to-air missiles, as well as four R-73 IR agile all-aspect short range air-to-air missile. The basic Su-27 has only a limited air-to-surface capability consisting of only unguided bombs and rockets.

su-27


As the T-10 the aircraft made its maiden flight on 20 May 1977 and was allocated the provisional reporting name 'Ram-K' and then the full NATO reporting name 'Flanker-A'.

The aircraft suffered many problems, including excessive drag, inadequate structural strength, flutter and excess weight. It had to be totally redesigned (as the T-10S) before it could be put into production. The redesigned aircraft received the reporting name 'Flanker-B'. The aircraft's large size gives it a massive internal fuel capacity, and a correspondingly long range. It can also carry up to 10 air-to-air missiles (six long-range AA-10 'Alamo' and four short-range AA-11 'Archer'), in addition to its built-in 30mm cannon.

Deployment of the Su-27 Flanker air superiority fighter began in early 1986, but only 15 were operational by 1987, according to US estimates. Delays have been caused by devel-opment difficulties, the USA states, and one unofficial source suggests that the problem concerns the Flanker’s pulse-Doppler radar.

For training Su-27 pilots, a tandem two seat training version was developed under the designation Su-27UB. The single-seat Su-27 (Flanker B) and two-seat Su-27UB (Flanker C) are standard production aircraft and both carry an on-board armament of a single 30-min cannon and external locations for air-to-air missiles. In 1990 they were operational only with the Soviet AF.

China is so far the only export customer for the Su-27, although the break-up of the USSR has meant that it serves with several former Soviet States, including Russia and the Ukraine. There have been a host of experimental versions of the basic Su-27, including the P-42, which smashed many of the time-to-climb records set by the F-15.

The Russian Air Force received its first batch of upgraded Su-27s in 2006. The air force seems to have settled for the mid-life upgrade offered by KnAAPO based on the Su-30MK2, which brings the aircraft up to Su-27SM standard. The Su-27SM is equipped with an upgraded fire control system including the improved N001V radar with phased array antenna, which offers improved performance and air-to-surface mode. The new system enables the use of the RVV-AE (R-77) medium range air-to-air missile and a wide selection of guided air-to-surface bombs and missiles. Another heavily updated feature is the cockpit, which is upgraded with three MFD, new HUD, satellite receiver and new communications set. The aircraft's self-defense suite has also been upgraded.

The Russian Air Force plans to upgrade its entire fleet to Su-27SM standard, but the exact number of aircraft involved remains unclear.

The Su-27SM is based on earlier proposed upgrades for the Su-27SK export version. The Su-27SMK as it is designated has seen two attempts, with at the basis a different radar system (N001M and N001VEP respectively). China was seen as the premier customer for an upgrade package. However China opted to expand its Flanker fleet with multi-role Su-30MKK and Su-30MKK2 instead of upgrading its Su-27SK and J-11 single-seaters. Instead China planned an indigenous upgrade for its J-11s. Other clients also preferred two-seat Su-30MK/MK2. From 2002 onwards, Sukhoi and KnAAPO developed a new deeply modernized single-seat Su-27 derivative known as Su-27BM. Designated Su-35, it will be offered for new export orders, replacing the previously offered Su-35, which was based on the Su-27M and offered in the 1990s.

Sukhoi were awarded a contract to develop a long-range interceptor based on the Su-27 for service on board the USSR's new generation of aircraft-carriers, while Mikoyan were given responsibility for developing a smaller multi-role strike-fighter based on their MiG-29. The resulting Su-27K was in many respects a minimum-change version of the basic series production Su-27, with the same avionics and intercept-optimised weapons system. It was fitted with canard foreplanes, was structurally strengthened, and had folding wings and tailplanes, an arrester hook and corrosion protection. The end of the Cold War and the break-up of the Soviet Union left Russia with only one of the planned four carriers, and it was decided to equip this ship with a single aircraft type. Inexplicably, the Su-27K was selected as that type, despite its large size (limiting the number that can be carried), high cost and lack of versatility. It has since been re-designated Su-33. To fulfill the very long-range, long-endurance intercept role, Sukhoi developed the Su-27PU, a two-seater based on the Su-27UB with provision for inflight refuelling, systems proved for extended operation, and with provision to carry an intercept controller in the rear cockpit to enable the aircraft to act as a mini-AWACS. The aircraft has since been re-designated Su-30. The derived Su-30M (Su-30MK for export) adds ground attack capability, and compatability with a wide range of guided air-to-surface weapons.

In 1985 the first conceptual design for a navalized version of the Su-27 fighter was approved to provide the navy's new carriers with an air superiority fighter for air defense. The carrier-borne aircraft was designated Su-27K (K = Korabelny, Ship-Borne) , factory designation T-10K and was later given the Su-33 designation by Sukhoi. Unlike the Russian Air Force which was reluctant to adopt the OKB's designations for advanced Flanker derivatives, the Russian Navy officially adopted the Su-33 designation for its ship-borne Su-27Ks. NATO/ASCC reporting name for the navalized Su-27 was 'Flanker-D'.

Changes from the shore-based Su-27 were the addition of canards, re-profiled leading-edge root extensions, redesigned folding outer wing panels, seperately controlled aileron and flaps. These changes were supported by an upgraded fly-by-wire control system and hydraulic system.

The Su-27K airframe and landing gear was strengthened to cope with the additional stress from carrier landings. The nose gear was changed to a twin-wheeled one with a telescopic strut and features an additional landing light and three-colour indicator lights for the carrier's flight controller's reference regarding glide-patch and landing speed.

The aircraft was equipped with a retractable hook system. The AL-31F engines were uprated to enable the pilot to recover from a failed hook up.The drag chute was removed from the tail boom. The boom itself was shortened and flattened. The wings, the horizontal stabilisers as well as the nosecone were made to fold up to reduce the aircraft's dimensions. Other visible changes included the addition of two hardpoints and a retractable in-flight refuelling probe on the port side forward of the cockpit. The IRST sensor was shifted to the starboard side.

The fighter's navigation, landing and fire control systems were all upgraded for the new environment. The SUV-27K fire control system enables the fighter to intercept aerial targets with the support of the aircraft carrier's command and control.

The 24 series produced Su-27Ks were deployed with the Northern Fleet and were assigned to the Admiral Kuznetsov aircraft carrier, which deployed on her first long-term ocean cruise in 1995 with 13 Su-27K naval fighters onboard.

To train Su-27K pilots the Su-27KUB (Su-33UB) was developed. The Su-27KUB is a combat capable trainer which features a side-by-side cockpit similar to the Su-27IB (Su-32/34) bomber. This layout was needed because the Su-27UB tandem cockpit gave not sufficient visibility for the instructor to make a safe carrier landing.

The Su-27KUB has a larger wing area, canards, ventral fins, rudders and horizontal stabilisers. These changes enable lower approach speeds and a smoother and thus safer landing. The nose section has considerably been modified to fit the side-by-side cockpit, but retains the circular nose. The pilots enter the cockpit via the nosewheel bay. The IRST is, unlike on the Su-27K, centered in front of the cockpit and the IFR probe is placed on the port side just below the canopy. The gear, air intakes, fins, hook, etcetera remained the same as on the Su-27K. The maiden flight, first carrier landing and take off all took place in 1999. In the following years, the Su-33UB has successfully completed testing and certification, which enables the type to enter series production.

The Su-27KM (Su-33M) is a proposed upgrade of the Su-27K. In the past the proposed upgrade was based on the Su-27M, but is now thought to evolve into a more advanced upgrade based on the air force's Su-27SM2 and the latest Su-35 (Su-27BM) export derivative. With upgraded fire control system the fighter is able to deploy the latest RVV-AE (R-77) air-to-air missile and guided air-to-surface weapons, including laser and TV guided missiles and the Moskit heavy anti-ship missile. Other features include updated navigation, communication, ECM and cockpit with LCD screens and modern HUD. There were also plans for a modernised export version of the Su-33 designated Su-33MK, which could be revived now China has shown interest.

su-33-2
Su-33


Su-33KUB: The Su-33KUB (Korabel'nyi uchebno-boyevoi) is the latest twin-seat (side-by-side) shipboard development of the Su-27 family. Fitted with dual controls, the aircraft is suitable for training or all-weather combat tasks. First flight took place on 29 April 1999. The aircraft incorporates interesting improvements over previous Su-27 derivatives. The so-called 'smart' (intellektual'noye) adaptive wing is redesigned and is of larger area. New control systems result in almost completely automatic navigation, flight, powerplant (two navalised AL-31F with thrust vectoring) and combat regimes. Crew workload is much reduced, and the glass 'dark' cockpit is equipped with colour flat-screen displays. The Su-33KUB is the first Russian aircraft to have an onboard oxygen and nitrogen generator, designed (as with other improvements) to reduce dependence on ground or deck facilities. Future use of Su-33KUB is not restricted to shipboard operations. Its high power-to-weight ratio gives stort take-off and landing (STOL) performance on minimal landing strips and the folding wings permit storage in standard aircraft shelters.

 

 



The Su-33 future seemed to be limited to the Russian Navy's fleet of 24 Su-33s operating from its sole aircraft carrier Kuznetsov.

su-30mkk
Su-30MKK


The Su-27PU (later known as Su-30) was developed in the late 1980s as a long range interceptor and airborne command post for the Soviet Air Defense Forces. The two-seat Su-27UB combat trainer was selected as a basis for this variant because it had the performance of a single-seat Su-27 and the benefits of having a two-men crew.

To adapt the Su-27UB to its new role the aircraft was fitted with an in-flight refuelling system to increase range and the aircraft's avionics were changed, fitting special communications and guidance equipment to command formation flights of single-seat Su-27 interceptors. The rear cockpit received a large CRT display which provides the formation leader with tactical information regarding targets and interceptors. The navigation and fly-by-wire systems were also upgraded.

su-33
Su-33


The Su-30 is a two-seat (tandem) long-range combat aircraft and trainer. Financial stringency has restricted the total to date in Russian service to 5. The Su-30 was designed for mission of 10 hours or more with two in-flight refuellings, including group missions with Su-27s where only the Su-30 would operate its radar, assigning targets to Su-27s by radio datalink. It is fitted out to carry bombs and rockets, but not guided air-to-surface weapons. Canards and thrust vectoring are optional. The export designation is Su-30K. The K stands for kommercheskii (export) in Russian.

In addition to the small quantity of Su-30 in Russian service, the Irkutsk Aircraft Production Association reports that the Su-30 (as well as Su-27UB) is the model delivered to China, and will be delivered to Vietnam, though these aircraft are likely to be standard Su-27UBs. China has a further requirement for Su-30s, but Russia is reportedly unwilling to supply the requested new-generation very long-range AAMs. China would almost certainly require the multirole Su-30M, not basic Su-30s.

The Su-30 has the Su-27UB's tandem seating and new avionics. Its configuration is similar to the Su-27UB, with unstable aerodynamic characteristics, as are its structure and equipment, bar its flight refuelling probe and buddy refuelling capability. The two crew sit in tandem in identical cockpits, on K-36 zero/zero ejection seats, with the rear seat raised. Systems are as per the Su-27UB, except gaseous oxygen for 10 hours' flight. It is offered with a NIIP N001 Myech ('Slot Back') coherent pulse Doppler look-down/shoot-down radar. The ability to track 10 targets and engage two simultaneously is offered, but this is probably not on current aircraft. Su-30 has a new navigation system based on GPS, Loran and Omega. The integrated fire-control system enables radar, infrared search and track (IRST) and laser rangefinder to be slaved to pilot's helmet-mounted target designator and displayed on wide-angle head-up display (HUD). There is provision for fitting foreign-made airborne and weapon systems at customer's request.

The Su-30 self-defence fit consists of a SPO-15LM Beryoza 360º radar warning system and chaff/flare dispensers.

Su-30M: A two-seat multirole fighter with canards and AL-37PP engines with thrust vectoring. Improvements include compatibility with stand-off air-to-surface weapons, a more accurate navigation system, and ability to carry pods for laser designation or anti-radiation missile (ARM) guidance. Western avionics, guidance pods and weapons can be fitted optionally. In production for India; China showed interest during 1998 in acquiring 50. The standard export variant is known as the Su-30MK.

Since series production of the Su-30 started in 1991, the first aircraft being test flown on 14 April 1992, only a handful have entered service with the Russian Air Force.

In 1993 Sukhoi converted the first series produced Su-30 into a demonstrator to market the multi-role version designated Su-30MK. MK standing for Modernizirovannyi Kommercheskiy ('modified commercial') indicating that this new version was developed especially for the export market. Centerpoint of the new version would be an upgraded multirole fire control system, depending on the customer's requirements. The air-to-ground capability of the aircraft is effectively greatly enhanced and a large variety of new guided missiles and bombs were added to the armament options. For the air-to-air role, the new RVV-AE (R-77) medium-range active radar homing missile was added to the options.

The first customer for the multi-role Su-30MK was India. To meet the customer's demands the Su-30MKI variant was developed. The Su-30MKI differs substantially from the original Su-30MK demonstrator.
The new variant is fitted with canards and new thrust vector controlled (TVC) engines to boast the aircraft's manoeuvrability. The nozzles of the AL-31FP engines are able to vector up to 15 degrees in both vertical and lateral direction.

The Su-30MKI is fitted with the NIIP N011M multimode phased array radar, which is also the radar of the Su-35/37 advanced single-seaters. The IRST system was replaced with an updated version - OLS-30. The head-up display and navigation systems were replaced with systems from the French manufacturer Sextant Avionique.
The first prototype Su-30MKI (Su-30I-1) was first flown on 1 July 1997, the second prototype on 23 April 1998. Both of these were converted from series produced Su-30s. The first batch of Su-30s for the Indian Air Force was however delivered in the spring of 1997. These were of the Su-30K type ('commercial' version of the basic Su-30), sometimes also designated Su-30MK since some limited upgrade work had been done. The Su-30K/MK fleet will be replaced by new Su-30MKI aircraft, with Russia buying back the Su-30Ks.

 

Su-30-Ind
An IAF SU-30 aircraft takes off during the Aero India Show 2009 at Yelahanka

 

India's orders for the Su-30MKI count 32 aircraft produced by Irkut, 140 license-built by HAL, 18 Irkut produced Su-30MKIs as Su-30K replacements, and an additional batch of 40 license-built aircraft is being considered. As of mid-2007, at least 50 Su-30MKIs including the first 32 produced by Irkut, are believed to have entered service.

Su-30MKI: Version for India in four configurations, sometimes referred to as Su-30MKI, MKII, MKIII and MKIV. The first eight were delivered in March 1997 to basic Su-30PU standard (or even as Su-27UBs), with AL-31F engines. Eight delivery in 1998 were expected to have French Sextant avionics, Israeli electronic warfare (EW) equipment and a rearward-facing radar in the tailcone, but these were delayed by an Israeli embargo in wake of India's nuclear tests. The 12 deliveries planned for 1999 are meant to have added canards, as on the Su-37. The final 12 in 2000 will have AL-37FP engines, with single-axis thrust-vectoring nozzles inclined out 32° from the centreline. The AL-37PP is claimed to offer 3-D thrust vectoring. A further 10 aircraft ordered in late 1998 will be delivered to full MKI standards, with the first 28 aircraft being upgraded to a similar standard by Sukhoi under a rolling programme. HAL have an option to produce up to 120 aircraft under license within five years.

The Su-30MKK multi-role twin-seat fighter was developed for China. Like the Su-30MKI it gas a twin-seat cockpit with modern multifuction displays and is equipped with an in-flight refuelling system. In addition to these updates, the aircraft is also fitted with the larger fins of the Su-35 design to accomodate more fuel. However it does not have the canards and TVC engines for super manoeuvrability. The aircraft carries the N001VE radar which is compatible with the RVV-AE missile. Like other Su-30MK derivatives it carries a wide arrange of air-to-air and air-to-surface weapons on 12 hardpoints. The take-off weight however has been increased to 38,000 kg by airframe and landing gear strengthening. This makes the Su-30MKK the only Su-27 derivative which is capable of both maximum payload and maximum fuel carriage.

In 1999 Sukhoi converted the T10PU-5 (first Su-30 prototype) into the first Su-30MKK, first flying on 9 May 1999. It was quickly followed on 19 May 1999 by the first production Su-30MKK '501' built by KnAAPO made its maiden flight. In the summer of 1999 another production Su-30MKK was rolled out, this aircraft carrying serial '502' was painted in similar colors as the Chinese Su-27SK/UBK fleet. Series production has begun of about 50 aircraft destined for the PLAAF. Follow up orders consist of the updated Su-30MK2 and Su-30MK3 specification (alternative designations are Su-30MKK2 and Su-30MKK3 respectively).

The multi-role two-seat Su-30MK variant are attractive candidates for many countries that are in the market for a fourth generation fighter. Indonesia followed India and China by obtaining two Su-30MKK variants. No official designation has been appointed to this variant. They are believed to be equivalent to the PLAAF Su-30MKK and/or Su-30MK2 variants. Earlier, Indonesia cancelled a contract for single-seat Su-30s (see below) because of monetary issues. The selection of the Su-30MK seems more to be an issue of having a modern combat-capable trainer, since Indonesia also obtained two single-seat Su-27SK in the same deal, than to have a multi-role two-seater. Indonesia plans to place a follow-up order of 6-8 aircraft to establish a full Flanker squadron, but the order is yet to be placed. It remains to be seen which variant will be chosen.

Vietnam also placed on order for a slightly modified version of the Su-30MK2, reportedly designated Su-30MK2V and featuring upgraded communications suite and improved ejection seats. The four two-seat aircraft were delivered in November 2004.

Malaysia signed a contract for 18 Su-30MKM fighters in 2003. The Su-30MKM is another multi-role Flanker variant based on the Su-30MKI, tailored to the customer's requirements with regards to its avionics suite. For example, Israeli-produced ECM systems as seen fitted on the Su-30MKI are replaced by Russian and South African systems. Two of Sukhoi's Su-30MKI pre-production aircraft (bort numbers 04 and 05) served as Su-30MKM prototypes. The Su-30MKMs are being manufactured at the Irkutsk Plant and the first two aircraft were formally handed over to the RMAF in April 2007 at Irkutsk, before arriving in Malaysia on June 18, 2007. Two more examples quickly followed, with all aircraft to have been delivered in 2008.

su-30-mki
Su-30MKI


The Su-30MKM proposal was pitted against the Boeing F/A-18 Super Hornet. Malaysia opted to order the Su-30MKM first, but is still considering to buy Super Hornets and have a mixed fleet. Alternatively, additional Su-30MKMs may be ordered. Malaysia currently operates a mixed fighter fleet, with both the Russian MiG-29N Fulcrum and F/A-18D Hornet. RMAF officials were quick to counter early reports that the new Su-30MKM aircraft would replace the Fulcrums, saying that the MiG-29s will remain in service as a pure air defense fighter.

In 2005, Thailand formally requested information for the possible acquisition of the Su-30 (probably for the two-seat multi-role Su-30MK). The Russian offer is believed to include a minimum of ten aircraft. Thailand is also reviewing advanced block F-16s and the Gripen.

In 2006, Venezuela ordered 24 Su-30MK2 AMV (also known as Su-30MKV) multi-role Flankers with the first deliveries taking place in late 2006. The Su-30MKV is based on the Su-30MK2, produced by KnAAPO.

In January 2006, Algeria signed a contract for 28 Su-30MKA. The Su-30MKA is a variant based on India's Su-30MKI and Malaysia's Su-30MKM developed by Sukhoi OKB and Irkut and produced by the Irkut Aircraft Production Association plant in Irkutsk. The Su-30MKA will feature French avionics, probably including the Thales Damocles laser designation and targetting pod, but is said to be closer to the Su-30MKI than the Su-30MKM. Production is underway and the first two aircraft have been handed over to Sukhoi design bureau for flight-testing in July 2007. Irkut plans to deliver the first six aircraft before the end of 2007.

KnAAPO started development of an upgrade programme for the single-seat Su-27SK in 1995, then designated Su-27SMK. The upgrade would improve range and combat effectiveness by making it multi-role. The first phase of this upgrade resulted in the Su-30KI single-seat tactical fighter in 1998. Based on the Su-27SK, it was fitted with IFR probe, satnav receiver, ILS/VOR navigation and landing systems, RVV-AE missile capability. The next phase implements new advanced avionics, computers, phased array and weapons.

The Su-30KI (No 40-02) prototype being converted from the Su-27SMK demonstrator, first flew on 28 June 1998. The aircraft is painted in a grey-black-blue paintjob and first was revealed at the MAKS '99 international aerospace show.

Earler in 1997 Indonesia placed an order for 24 Su-30KI fighters, believed to be the same standard as the 'Su-30KI upgrade' although some sources say it was specifically developed for Indonesia. The order was cancelled.

The Irkutsk Aircraft Industrial Association (IAIA), jointly with Sukhoi Design Bureau, "Russkaya Avionika" Design Bureau and Russia's Air Force developed an upgrade for operational two-seat fighters, the Su-27UB, Su-30 and Su-30K. The Su-30K prototype was upgraded to Su-30KN standard. The first phase of the upgrade enables the aircraft to operate guided ASM and bombs by adding a new mission computer, upgrading the N001 radar and weapons control system. The cockpit has been equipped with colour MFDs. It also adds to the RVV-AE (R-77) missile to its inventory. This first phase can be followed up by a second stage upgrade which enhances the air-to-air capabilities by replacing the slotted antenna with a phased-array antenna. Other suggested improvements include modern avionics and bigger MFDs.

In 1983 the first conceptual design for a new tactical bomber was made. The new aircraft was planned to replace the third generation fighter-bombers and tactical bombers; the Su-17, MiG-27, Su-24 and their derivatives, in the 1990s. The Su-27 would serve as the basis for the new aircraft, designated Su-27IB (factory designation T-10V). IB standing for Istrebitel-Bombardirovshchik or fighter-bomber. The Su-27IB incorporates the heavy payload and combat radius of the tactical bomber and the high manoeuvrability and speed of the fighter, so it could be deployed against ground, naval and also airborne targets.

The design was considerably changed from the basic Su-27/Su-27UB. To improve interoperability between the pilot and navigator, the cockpit arrangement was completely changed by side-by-side placed K-36DM ejection seats. In addition the cockpit has been pressurized. The crew is able to lie down or prepare some food in the area behind the cockpit. To improve sanitary conditions the aircraft has also been fitted with a toilet. The cockpit is accessed via a hatch and ladder in the front nosegear well, which was placed more forward and is retracted backwards into the well.

su-34-2


To accomodate the new cockpit configuration, additional equipment and increased fuel internal fuel load, the fuselage has changed drastically. The nose section is shaped elliptical, which gave the aircraft the nickname 'Platypus'. The fuselage midsection has been changed to accomodate the increased size No 1 fuel tank. The engine intakes were changed from variable to fixed geometry air intakes. Also the rear of the aircraft underwent changes in the shape, the most recognisable is the new enlarged central tailboom. The wing panels and canards of the Su-27M were adapted for improved flight characteristics and larger fuel cells. All these changes meant an 1.5 increase of the take-off weight. The maximum take-off weight increased from 28 tonnes of the basic Su-27 to 45 tonnes. To cope with the increased weight the mid section was strengthened and a new undercarriage was fitted, the main landing gear single-wheels have been replaced by two wheels placed in tandem.

The aircraft carries a multifunction phased array radar and built-in IRST/sighting system with incorporated TV and laser detection and guidance capability. A thermal imaging system for night operation would however be carried externally. Also the aircraft has been fitted with powerful ECM equipment and a rearward-looking radar, like the Su-35. The new systems ensured day and night, all-weather capability against both surface and airborne targets.

As common with Su-27 derivatives, also the Su-27IB has been given an alternative designation by Sukhoi and aviation press. The Su-27IB has also been known as the Su-34 since its maiden flight.

The first prototype built from an Su-30 tandem two-seat trainer reconfigured with a side-by-side seated cockpit made its maiden flight on April 13, 1990. The second prototype, completely built from the ground up, took to the air on December 18, 1993.

When however the Su-34 was sent to its first international airshow, Le Bourget in 1995, the aircraft was given the designation Su-32FN. This commercial designation was adopted by Sukhoi, to stress the aircraft's potential as a shore-based maritime patrol and strike aircraft for potential export customers in search of a fast aircraft to be deployed against ships and submarines. The design called for special equipment and weapons to detect and destroy waterborne targets. No customer have been found yet, and the specific variant has remained on the drawing board.

In 1999, the Su-34 was now presented as Su-32MF on the MAKS 1999 Moscow International Air Salloon. This time to stress its multi-role capability. MF standing for the Russian equivalent of Multi Function. Though, no export customers have been found yet.

In 2003 it was reported by Western aviation press, that the Russian military adapted the Su-32 designation for the Su-27IB variant. However this was soon contradicted by other sources, and Russian Air Force officials have been using the Su-34 designation ever since.

Reportedly the NATO/ASCC reporting name for the Su-34 is Fullback.

su-32fn
Su-32FN


Although after the break-up of the Soviet Union funding has been limited for a new tactical bomber, the development has continued at a slow pace. After the two prototypes (T-10V-1 converted from a Su-27UB, bort number '42', and T-10V-2 bort number '43'), two more prototype Su-34s have been series-produced in 1994/1995 (Su-34 '343' carrying bort number '44' and Su-32FN '349' bort number '45'). Later at least one more flying prototype was produced by NAPO, carrying number '47'. These were based at the Sukhoi OKB testing base for flight trials until state trials began. The Su-34 was successfully tested in the Chechênia according to Russian authorities, and it also participated in combat exercises at Ashuluk in 1999.

In December 2003, the Russian Air Force revised the specification requirements for production aircraft. Low-rate initial production of two production Su-34 by NAPO for the Russian Air Force was started in 2005. The first production aircraft was rolled by NAPO on July 6, 2006, making its maiden flight on October 12, 2006. This aircraft believed to have been the eighth Su-34 produced (bort number 48) and the second production aircraft (bort number 49) were handed over to the Russian Air Force on December 15, 2006, after having been painted and recoded 'Red 01' and 'Red 02'. The two aircraft were slated for delivery to he 4th TsBP I PLS (4th Combat and Aircrew Conversion Training Centre) in Lipetsk for state acceptance trials.

On August 3, 2007, the first production standard aircraft was delivered to to Lipetsk officially starting operational evaluation followed by conversion training.

Between 2007-2015 the Russian Air Force will procure a large number of upgraded Su-34 bombers, to replace the Su-24 'Fencer' fleet in primarily the strike attack role. The first aircraft are expected to enter operational service before the end of 2009. Initially it was planned to acquire six aircraft in 2007 followed by ten aircraft in 2008. In 2010, 24 Su-34 would have been delivered for the first air regiment to be based at Voronezh and a total of 58 Su-34s would be in service by 2015, equipping two or three bomber regiments, said Deputy Prime Minister and defence minister, Sergey Ivanov on March 23, 2006, on a visit to the NAPO plant.

However when full-rate production of the type was started in January 2008, a slightly different schedule was announced. It was announced that at least five aircraft would be produced in 2008, building up to a maximum of 20 aircraft per year with around 70 Su-34 to be acquired by 2015.

Considering these new plans, it now seems unlikely that the first regiment will have its full complement as early as 2010.

The aircraft has set a number of world records for flight altitude and payload capabilities.

The Su-27M (redesignated Su-35 during 1992) was developed as a successor to the Su-27 in PVO and Frontal Aviation service. Sharing the same basic airframe as the standard 'Flanker', with minor refinements including taller, square-tipped tailfins, the. Su-27M introduced many changes under the skin. A new radar and fire control system have been adopted, along with a modern glass cockpit with three multi-function CRT displays. The fly-by-wire control system has also been redesigned. Critical economic problems led to the abandonment of the Su-27M's intended shorter-range, lower-cost, and more versatile counterpart, the MiG-29M, leaving it as the sole Russian tactical fighter programme for the 1990s.

Based on the Su-35 (Su-27BM), the Su-27SM2 upgrade is on offer to the Russian Air Force for the second phase of its Su-27 mid-life upgrade program. The Su-27SM2 upgrade will give Russia's existing Su-27s a similar avionics and weapons suite as offered on the Su-35 (Su-27BM). The Russian Air Force has expressed interest in the Su-35, but it remains to be seen whether this will include new airframes or be limited to the Su-27SM2 upgrade.

Upgraded Su-27 Flankers for the Russian Air Force are also planned to be fitted with upgraded engines. Both MMPP Salyut and NPO Saturn have developed modernized and more powerful AL-31F variants. In December 2006, the MMPP Salyut's AL-31F-M1 turbofan passed state acceptance tests for use on the Su-27SM. The AL-31F-M1 produces 132.4 kN (29,765 lb) of thrust in an additional mode, 9.8 kN (2,203 lb) more than the standard AL-31F turbofan. It will be followed by the AL-31F-M2 and the even more powerful AL-31F-M3 with 147.1 kN (33,069 lb) of thrust is also under development to compete for the first stage of the PAK-FA program, Russia's future fifth generation fighter. Rival NPO Saturn meanwhile developed the izdelye 117S, another AL-31F derivative based on the AL-41F which produces 142.2 kN maximum thrust. Co-funded by Sukhoi and UMPO, the 117S will enter series production both at Saturn and UMPO to power the Su-35 export fighters. On Febuary 19, 2008, the first Su-35 prototype made its maiden flight powered by two 117S. NPO Saturn is also competing to power the PAK-FA with a further modified 117S. Pending a decision on the powerplant selection for the 'first stage' of the PAK-FA program, it remains to be seen which of the options will power the Su-27SM/SM2 upgrades.

The two-seat aircraft will most likely be upgraded to Su-27UBM. Although IAPO offered such an upgrade demonstrated on the Su-30KN, it remains unclear whether the Russian Air Force has opted for this upgrade or plans to have KnAAPO update the two-seaters under a similar program as the Su-27SM/SM2.

The Su-27M (factory designation T-10M) was conceived as a new upgraded variant of the Su-27 'Flanker' incorporating a true air-to-surface capability. Although the capability to carry air-to-surface weapons had been added to the baseline Su-27S, it was limited to 'dumb' bombs and unguided rockets. The Su-27's fire control system lacked a dedicated ground target acquisition and identification capability. The air-to-air capability would also be improved to restore the balance with the contemporary F-15C and F-16C. Although Su-27M remained the Russian military designation, the Su-27M later received the Su-35 designation to enter the global fighter market. Having failed to attract any orders for the Su-35 between 1992 and 2002, Sukhoi started a new development program for the modernization of the single-seat Su-27 in 2002 under the bureau/factory designation of T-10BM (Bolshaya Modernizatsiya - Big Modernization). This Flanker derivative also aimed at the export market retained the Su-35 designation of its predecessor, despite significant differences between the two Flanker derivatives.

The Su-27M was equipped with the upgraded RLSU-27 radar system. The system was composed of the new forward-looking N011 radar with slotted-array and the smaller N012 rear-looking radar, the latter is located in the central tailboom. Compared to the RLPK-27 system with the N001 radar of the basic Su-27 variants, the RLSU-27 system offered extended target acquisition range, air-to-surface stand-off attack capability, simultaneous tracking of more targets, surveillance and tracking of targets in the rear hemisphere and improved counter ECM. The new radar system also provided terrain-mapping, enabling nap-of-the-eartch (NOE) flying and obstacle avoidance.

Later it was concluded that the slotted-array would be outdated soon, and a phased array variant of the N011 radar, designated N011M, was fitted to the Su-27M. The phased array enabled a greater radar range, wider zones of tracking and engagement, increase in number of simultaneously tracked and engaged targets, and the employment of more advanced weapons.

In addition to the radar, the Su-27M featured other advancements in its avionics suite compared to the Su-27. New components were the electro-optical sighting/navigation system, communications suite, instrument guidance equipment, new FBW system, IFF and digital computer. The aircraft was equipped with an advanced self-defence suite consisting of new RWR systems, Sorbtsiya ECM pods, and APP-50 chaff/flare dispenser.

The instrument panel layout was changed to accomodate three high-res multifuction monochrome CRT displays and an improved HUD, reducing the number of electro-mechanical instruments. The Su-35 was also offered with multifunction colour LCD displays. The IRST sensor was moved to the right off the line of symmetry to improve visibility from the cockpit. The ejection seat was elevated and declined at 30 degrees to enable the pilot to better withstand high G manoeuvering. The pilot would wear a helmet with the Shchel-3UM helmet-mounted target designator.

The Su-27M airframe incorporated a new nose section, new central tailboom, canards, and uprated AL-31FM engines. The wings panels were fitted with larger fuel cells and the enlarged fins have internal fuel cells as well increasing the aircraft's combat radius. Furthermore the Su-27M was fitted with a retractable in-flight refueling probe and the provision to carry two 2,000-litre underwing drop tanks to further extend its range.

The aircraft's structure and undercarriage was strengthened to cope with the increased weight of the aircraft caused by the new equipment. The single nose wheel was replaced by two smaller wheels.

su-34
Su-34


The new systems enabled the Su-27M to be capable of using modern air launched weapons. The most important addition for the air-to-air role was the medium-range active radar homing R-77 (export designation is RVV-AE) air-to-air missile, the Russian equivalent of the AIM-120 AMRAAM. Up to twelve of these missiles could be carried or ten when equipped with wingtip ECM pods. The Su-27M retained the capability to be armed with the older R-27 semi-active radar, R-27E IR homing medium-range missiles as well as the short-range R-60 and R-73 IR homing missiles. All of which have since been developed into more effective versions.

The Su-27M armament suite also included guided air-to-surface missiles and bombs. Aside from the unguided rockets already on the basic Su-27's weapons list, the Su-27M was now also capable of the Kh-29 TV-guided, Kh-31P anti-radiation, and Kh-31A anti-ship missiles. In addition to the increased number of "dumb" free-fall, retarded, incendiary, and cluster bombs, the TV-guided and laser-guided KAB-500 bombs were planned to be integrated.

These new systems and weapons capabilities made the Flanker a true multi-role fighter. Following the collapse of the Soviet Union, the Su-27M development slowed down and prospects of any significant production for the Russian air force soon vanished. Owing to its true multi-role capability, large action radius and reasonable price tag, the Su-27M was considered a good candidate for export. The Su-27M designated Su-35 was first shown at Farnborough international air show in 1993. Early attempts included the Su-35 based Su-37MR, which was marketed to the United Arab Emirates (UAE), After the initial series production of three Su-27Ms had been completed for state trials, the Komsomolsk-on-Amur aircraft manufacturing association (KnAAPO) suspended production and refocused on meeting the requirements of possible export customers. Among the customization options was the possibility to equip the Su-35 with AL-31FP TVC engines, which were developed following the successful Su-37 trials with the first generation of AL-31FU TVC engines. Other improvements for the export Su-35 also included an open architecture avionics suite incorporating the latest digital computers and display systems.

Another step towards meeting future customer requirements was to develop a twin-seat combat trainer variant of the Su-35. Sukhoi and KnAAPO developed the Su-35UB. The first Su-35UB prototype (bort number 801) built by KnAAPO made its first flight on August 7, 2000. It was first shown at the MAKS 2003 air show and subsequently served as a technology demonstrator and test aircraft for various avionics, including the Zhuk-MSE radar.

Despite efforts by Sukhoi and KnAAPO to market the Su-35, it did not receive any orders. The Su-35 had been considered by a number of nations for their next generation fighter program. These include South Korea, Singapore, Australia and Brazil. Apart from Brazil, the Su-35 failed to get shortlisted by these countries.

Brazil however was forced to postpone the decision, but had shortlisted the Su-35 together with the Mirage 2000BR and the Saab Gripen initially. Sukhoi/KnAAPO introduced the designation Su-35BR for the customized Su-35s that could be developed for Brazil. Before completition of the second round the Brazilian F-X program was cancelled.

Another South American candidate for the Su-35 emerged in the form of Venezuela soon after. The country was effectively forced to consider Russian fighters to replace its F-16 fleet, following the US arms embargo that was imposed on it in May 2006. The Su-35 was one of the options considered, however the multi-role Su-30MK variant had matured over the years incorporating some of the improvements of the Su-27M. More importantly, the Su-30MKK and Su-30MKK2 had entered full production at KnAAPO for China. The FAV quickly opted for the Su-30MK2.

In total 17 Su-27M aircraft were built by Sukhoi and KnAAPO; five prototypes converted from Su-27s, two static test airframes, six pre-production test aircraft, three production aircraft, and one Su-35UB prototype. Although the Su-35 (Su-27M) had no success on the global fighter market, the Su-27M line greatly contributed to the development of the Flanker family, both in terms of aerodynamics and avionics. The Su-27M saw the introduction of canards and 3D fly-by-wire control for enhanced manoeuvrability. The final two preproduction aircraft T10M-11 and T10M-12 (bort numbers 711 and 712) tested the N011M phased-array radar. Aircraft '711' went on to become the Su-37 and was soon after converted to thrust vector control (TVC) demonstrator, fitted with AL-31FU and modified FBW system.

All of the innovations were subsequently further developed to be fitted to Irkut's Su-30MKI for India, and subsequently the Malaysian Su-30MKM and Algerian Su-30MKA. KnAAPO's Su-30MKK and Su-30MK2 versions inherited the enlarged tailfins providing additional fuel capacity of the Su-27M.

Although the Russian Air Force never ordered more Su-27Ms to enter production for operational service, the handful of early Su-27M types continue to serve the air force. Five of the preproduction and production aircraft have been assigned to the Russian Knights display team, since the state trials of the type were suspended in the mid 1990s.

Su-27M '710' (T10M-10) continued to serve the company as a flying testbed in 2004-2006, flight testing the advanced AL-31F derivative by NPO Saturn, dubbed 117S (AL-41F), the new turbofan will power the next Su-27 derivative, which will also carry the Su-35 designation.

Sukhoi realized by 2002 that the original Su-35 (Su-27M) would no longer be able to compete with comtemporary and future foreign fighters. Furthermore, the Sukhoi-owned KnAAPO plant had been struggling to compete with its Su-30MK2 against the more advanced Su-30MKI derivatives of the Irkut Corporation, its rival Flanker producer only partially owned by Sukhoi. Sukhoi started development of a new 'intermediate fighter' to fill the gap between its "fourth generation" Su-30MK and the upcoming "fifth generation" fighter in development under the PAK-FA (Perspektivnyi Aviatsionnyi Kompleks Frontovoi Aviatsii - Future Air System for Tactical Aviation) program, while offering a KnAAPO alternative to Irkut's Su-30MKI line. Contrary to earlier reports, the resulting "4++ generation fighter" has materialized as a new Su-27 derivative as opposed to upgrade of the Su-27M. Re-using the Su-35 sans suffix designation, the Su-27 Bolshaya Modernizatsiya ('big modernization', factory designation T-10BM) differs significantly from the Su-27M, having been redesigned from the basic Su-27 configuration incorporating the improvements developed for the Su-27SM2 upgrade program.

 

Gallery


Su-27 Flanker Variants

Su-35 (Su-27BM)
1. Initial Development Prototypes:

T-10
bureau designation for first two Su-27 prototypes. NATO ASCC codename FLANKER-A

T-10S
bureau designation for revised design with redesigned wings, fuselage nose section, gear placement and tail section. NATO ASCC codename FLANKER-B

2. Basic Su-27 series:

Su-27S
standard version based on T-10S design, with original air-to-ground capability. Often designated Su-27 without -S.
Powerplant: 2x AL-31F
Thrust – afterburner: 122.58 kN / 12,500 kgf
Thrust – max dry: 7,770 kgf
Overall length: 21.935 m
Wing span: 14.7 m
Wing area: 62.04 sq.m
Height: 5.932 m
Empty weight: 16,300 kg
Normal take-off weight: 23,000 kg
Internal fuel: 9,400 kg / 11,975 lt
Max warload: 4,000 kg
Max speed high altitude: 2,500 km/h
Max speed sea level: 1,400 km/h
Max Mach number: 2.35
Service ceiling: 18,500 m
Max G load: 9
Range high altitude: 3,900 km
Range sea level: 1,400 km
Take-off run: 650 m
Landing roll: 620 m
Crew: 1

Su-27P
standard version but without air-to-ground weapons control system and wiring. Often designated Su-27 without -P.
Powerplant: 2x AL-31F
Thrust – afterburner: 122.58 kN / 12,500 kgf
Thrust – max dry: 7,770 kgf
Overall length: 21.935 m
Wing span: 14.7 m
Wing area: 62.04 sq.m
Height: 5.932 m
Empty weight: 16,300 kg
Normal take-off weight: 23,000 kg
Internal fuel: 9,400 kg / 11,975 lt
Max warload: 4,000 kg
Max speed high altitude: 2,500 km/h
Max speed sea level: 1,400 km/h
Max Mach number: 2.35
Service ceiling: 18,500 m
Max G load: 9
Range high altitude: 3,900 km
Range sea level: 1,400 km
Take-off run: 650 m
Landing roll: 620 m
Crew: 1

Su-27PD
Sole Su-27P prototype fitted with inflight refuelling probe. Later it was used by the ‘Test Pilot’ aerobatic display team, its radar and combat capabilities having been removed.

Su-27UB
basic training two seater version
Powerplant: 2x AL-31F
Thrust – afterburner: 122.58 kN / 12,500 kgf
Thrust – max dry: 7,770 kgf
Overall length: 21.935 m
Wing span: 14.7 m
Wing area: 62.04 sq.m
Height: 6.357 m
Empty weight: 17,500 kg
Normal take-off weight: 24,000 kg
Internal fuel: 9,400 kg / 11,975 lt
Max warload: 4,000 kg
Max speed high altitude: 2,125 km/h
Max speed sea level: 1,400 km/h
Max Mach number: 2.0
Service ceiling: 17,500 m
Max G load: 9
Range high altitude: 3,000 km
Range sea level: 1,300 km
Take-off run: 750 m
Landing roll: 650 m
Crew: 2

Su-27SK
export version of Su-27S, N001E radar, modified IFF system, payload upgraded to 8,000 kg, strengthened front wheel and different tyres for the main gear. Gardenia ECM system optional instead of the Sorbitsya. Also with various localization options.
Powerplant: 2x AL-31F
Thrust – afterburner: 122.58 kN / 12,500 kgf
Thrust – max dry: 7,770 kgf
Overall length: 21.935 m
Wing span: 14.7 m
Wing area: 62.04 sq.m
Height: 5.932 m
Empty weight: 16,870 kg
Normal take-off weight: 23,430 kg
Internal fuel: 9,400 kg / 11,975 lt
Max warload: 8,000 kg
Max speed high altitude: 2,500 km/h
Max speed sea level: 1,400 km/h
Max Mach number: 2.35
Max rate of climb:  330 m/s
Service ceiling: 18,500 m
Max G load: 9
Range high altitude: 3,680 km
Range sea level: 1,370 km
Take-off run: 450 m
Landing roll: 620 m
Crew: 1

J-11/J-11A
Chinese designation for license-built Su-27SK.

Su-27UBK
export version Su-27UB, with payload and wheel strengthening improvements identical to the Su-27SK

Su-27SMK
Proposed modernized export version based on the Su-27SK variant incorporating some of the improvements of the Su-27K and Su-27M. Phase I: increase internal fuel capacity to 9965 kg by fitting larger fuel cells, enable two 2,000 litre drop tanks, retractable refueling probe, increase number of hardpoints from 10 to 12, and modified N001M radar with R-77 capability. Phase II: integration of guided air-to-surface weapons and externally mounted weapons control system pod. Additional options included the Zhuk-27 radar, uprated engines, upgraded FBW control system and canards. One prototype converted by KnAAPO in 1995 from Su-27SK fitting the IFR probe.

Su-27SMK
Second try for a multi-role Su-27SK, largely similar to the earlier Su-27SMK. Instead of Zhuk-27 radar, it is fitted with the N001VEP radar and firecontrol system, which has identical capabilities as the Zhuk-27 system. The cockpit is similar to the Su-30MKK with a third MFD.
Powerplant: 2x AL-31F
Thrust – afterburner: 122.58 kN / 12,500 kgf
Thrust – max dry: 7,770 kgf
Overall length: 21.935 m / 72 ft 0 in
Wing span: 14.7 m / 48 ft 3 in
Wing area: 62.04 sq.m / 667.79 sq ft
Height: 5.932 m / 21 ft 10 in
Normal take-off weight: 24,000 kg
Max take-off weight: 34000 kg / 74958 lb
Internal fuel: 9,400 kg / 11,975 lt
Max warload: 8,000 kg
Max speed sea level: 1,400 km/h
Max. speed high alt: 2125 km/h / 1320 mph
Max Mach number: 2.15
Service ceiling: 17,750 m / 57400 ft
Max G load: 9
Range high altitude: 3,530 km
Take-off run: 450 m
Landing roll: 700 m
Armament: 1 x 30mm cannon
Crew: 1

Su-27SM
Russian domestic version of the Su-30MK2-based SMK mid-life upgrade, with N001V radar which has an additional search/detection mode with greater range. Entering service.

Su-27SM2

Stage two of the Su-27SM upgrade program. The Su-27SM2 upgrade package on offer to the Russian air force includes the NIIP Irbis radar, weapons system and engines of the Su-27BM (Su-35).

Su-27UBM
upgraded version for PVO/VVS of Su-27UB, based on Su-30KN but without the IFR probe, 10 aicraft have to be rebuild until the end of 2001

Su-27UBM1
Upgraded version for Belarus of Su-27UB developed by 588th Aircraft Repair Plant and Russian Avionics design bureau. Similar to the Su-30KN upgrade: improved interface, digital control systems, air-to-ground precision guided weapons, RVV-AE air-to-air missiles, 5x 5in MFD instead of the monochrome TV display, upgraded N001 with new modes and improved detection ranges. So far two aircraft have been upgraded.

Su-27RV
six replacement ‘Test Pilot’ display aircraft with westernised communications and inflight refuelling probes.

Su-27KRT
(‘Razvedchik Tseleukazatel’ or recon/target acquisition), proposed version

3. Su-30 series:

Su-27PU/Su-30
retractable air refueling probe, modified radar radar N001 (can attack 2 targets with R-27 simultaneously), upgraded navigation system, datalink APD-518, tactical displey SEI-31 in rear cockpit, rear seat position as mission commander for formations of single seat Su-27P/S, actually are upgraded on standard

 

Su-30KN
Powerplant: 2x Saturn Lyul'ka AL-31F afterburning turbofans
Thrust – afterburner: 122.58 kN / 12,500 kgf
Thrust – max dry: 7,770 kgf
Overall length: 21.935 m / 72 ft 9 in
Wing span: 14.7 m / 48 ft
Wing area: 62.04 sq.m
Height: 6.357 m / 21 ft 5 in
Max Take-Off Weight 33000 kg / 72,752 lb
Empty weight: 17,700 kg / 39,021 lb
Internal fuel: 9,400 kg / 11,975 lt
Max warload: 8,000 kg / 17,637 lb
Hardpoints: 8
Armament: one GSh-301 30mm cannon 150 rounds
Max speed high altitude: 2,125 km/h / 1,320 mph
Max speed sea level: 1,400 km/h / 870 mph
Max Mach number: 2.0
Service ceiling: 17,500 m / 57,410 ft
Max G load: 9
Range high altitude: 3,000 km
Range sea level: 1,300 km
Range with one IFR: 5,200 km
Take-off run: 750 m
Landing roll: 650 m
Crew: 2

Su-30I
(‘Istrebeitel’ or fighter) test aircraft with canards added.

Su-30K
export version of Su-30, 8 sold to India in 1997, but only in standard Su-27UB with retractable air refueling probe, next 10 with some French and Israeli systems in 1999, aicrafts from both batches will be rebuild to Su-30MKI standard

Su-30K2
planned training version, side by side seats like Su-27KUB, assembling works on first prototype started in 1998, but was abandoned

Su-30KI
KnAAPO/Sukhoi proposed single seat export version for Indonesia, incorporating the Su-27SMK phase I changes. Prototype rebuilt by KnAAPO from its Su-27SMK demonstrator, first flown on June 28, 1998. Further plans included improved avionics, cockpit, phased array, 12 hardpoints and extending the weapons suite. The Su-30KI prototype was also used by the RuAF for testing the R-77 in particular and served as yardstick for its Su-27 fleet mid-life upgrade.

Su-30KN
testbed for Irkut developed upgrade of Su-27UBs on UBM/BM and Su-30/Su-30K
Powerplant: 2x AL-31F
Thrust – afterburner: 122.58 kN / 12,500 kgf
Thrust – max dry: 7,770 kgf
Overall length: 21.935 m
Wing span: 14.7 m
Wing area: 62.04 sq.m
Height: 6.357 m
Normal take-off weight: 24,780 kg
Internal fuel: 9,400 kg / 11,975 lt
Max Mach number: 2.0
Max G load: 8
Range high altitude: 3,000 km
Range with one IFR: 5,200 km
Crew: 2

1. phase
radar with A-G and mapping modes, added guided A-G weapons, GPS, single colour MFD`s MFI-55

2. phase
avionics from MiG-29SMT, Mil Std. 1553B, 2-3 bigger MFDs MFI-68 in each position, stronger engines

4. Multi-Role Su-30 family:

Su-30M
upgraded avionics, added full A-G capability, 12 hardpoints, first real multi-role aircraft in Su-27 family

Su-30MK
initial export designation for the multi-role Su-30M marketed by Sukhoi

Su-30MKK

KnAAPO produced Su-30MK for China with Su-27M vertical tails. Improved N001VE radar and IRST for the upgraded fire control system with air-to-surface modes. Armaments include R-77, Kh-29T, Kh-59MK, Kh-31A, TV guided KAB series, R-27 and R-73 series. Reportedly designated J-13 in China.
Powerplant: 2x Saturn Lyul'ka AL-31F afterburning turbofans
Thrust – afterburner: 122.58 kN / 12,500 kgf / 27,550 lb st
Thrust – max dry: 7,770 kgf
Overall length: 21.935 m / 72 ft 9 in
Wing span: 14.7 m / 48 ft
Wing area: 62.04 sq.m
Height: 6.43 m / 21 ft 5 in
Empty weight:18400 kg / 40,564 lb
Max Take-Off Weight: 38000 kg / 83,775 lb
Normal take-off weight: 24,900 kg
Internal fuel: 9,640 kg / 12,280 lt
Max warload: 8,000 kg / 17,637 lb
Max speed high altitude: 2,120 km/h / 1,320 mph
Max speed sea level: 1,350 km/h
Max Mach number: 2
Service ceiling: 17,300 m / 57,410 ft
Max G load: 9
Range high altitude: 3,000 km
Range sea level: 1,300 km
Range with one IFR: 5,200 km
Take-off run: 550 m
Landing roll: 750 m
Armament: one GSh-301 30mm cannon 150 rounds
Hardpoints: 12
Crew: 2

Su-30MKI
unofficial designation for the two MKKs types sold to Indonesia, not to be confused with Irkut's Su-30MKI for India.

Su-30M2
upgraded Su-30MK with ESA radar N011M and avionics from Su-37, with canards and optionable with thrust vectoring engines

Su-30MK2
Su-30MKK with upgraded electronics that enabled support for antiship missiles. Upgraded radar called N001VEP. Also intended to work with SAPSAN-E and Kupol M400 reconnaissance pods. Delivered MKKs is expected to be upgraded to this standard.
Powerplant: 2x AL-31F
Thrust – afterburner: 122.58 kN / 12,500 kgf
Thrust – max dry: 7,770 kgf
Overall length: 21.935 m
Wing span: 14.7 m
Wing area: 62.04 sq.m
Height: 6.43 m
Internal fuel: 9,720 kg / 12,380 lt
Max warload: 8,000 kg
Max speed high altitude: 2,100 km/h
Max speed sea level: 1,400 km/h
Max Mach number: 2
Service ceiling: 17,300 m
Max G load: 9
Range high altitude: 3,000 km
Range sea level: 1,300 km
Range with one IFR: 5,600 km
Take-off run: 550 m
Landing roll: 750 m  
Crew: 2

Su-30MK2V
Su-30MK2 variant for Vietnam with minor modifications. Modifications include an upgraded communications suite and improved ejection seats.

Su-30MK2 AMV

 

Su-30MKV
Aviacion Militar Venezolana (AMV - Venezuelan Military Aviation) version of the KnAAPO-produced Su-30MK2 for Venezuela. First delivered in December 2006. Also known as Su-30MKV.

Su-30MK
no official designation: Proposed Su-30MKK upgrade with NIIP Panda radar (N001VEP + Pero phase array).

Su-30MK3
Su-30MKK with Zhuk-MSE radar. Support for Kh-59MK antiship missile. Developed for or in cooperation with China, reportedly cancelled due to dispute or concerns regarding technology/knowledge transfer.

Su-30MKI
Irkut produced export version for India with indigenous computers, French HUD Sextant VEH3000, nav. sys Totem INS/GPS, MFDs and some Israeli systems (RWR and ECM), 32 will be build in Russia, 140 in HAL company in India, first serial aicraft was flown on 26 November 2000, and then shown on Aero India.
Powerplant: 2x Saturn Lyul'ka AL-31FP TVC afterburning turbofans
Thrust – afterburner: 130 kN / 29,400 lb st
Overall length: 21.935 m / 72 ft 9 in
Wing span: 14.7 m / 48 ft
Wing area: 62.04 sq.m
Height: 6.357 m / 21 ft 5 in
Empty weight: 18,400 kg / 40,564 lb
Normal take-off weight: 25,700 kg
Internal fuel: 10,000 kg / 12,780 lt
Max warload: 8,000 kg / 17,637 lb
Max Take-Off Weight: 34000 kg / 74,956 lb
Max speed high altitude: 2,125 km/h / 1,320 mph
Max speed sea level: 1,400 km/h / 870 mph
Max Mach number: 2.0
Service ceiling: 17,300 m / 57,410 ft
Max G load: 9
Range high altitude: 3,000 km
Range sea level: 1,300 km
Range with one IFR: 5,200 km
Take-off run: 550 m
Landing roll: 650 m
Armament: one GSh-301 30mm cannon 150 rounds
Hardpoints: 12
Crew: 2

Su-30MKM
Irkut produced version for Malaysia based on the Su-30MKI with significant avionics changes. Israeli-produced systems are replaced by Russian- and South African-manufactured systems, with in particular ECM systems, such as the MAW-300 missile approach warning system, LWS-310 laser illumination warning system, SAAB Avitronics EWC electronic warfare controller. Also the Indian display processing unit of the Su-30MKI has been replaced by a Russian unit. Furthermore the Thales Damocles LD/TGP has been integrated.

Su-30MKA
Irkut produced version of its Su-30MK for Algeria. The Su-30MKA is similar to India's Su-30MKI and Malaysia's Su-30MKM, but fitted with some alternative avionics. Like the Su-30MKM the French Thales Damocles LD/TGP is being integrated. First two examples commenced flight-testing in August 2007. Delivery of the first two aircraft started in December 2007 with official hand-over in January 2008. Sometimes the aircraft are referred to as Su-30MKI(A)

5. Navalized Su-27K series:

Su-27K/ Su-33
navalized fighter version, airframe with canards, folding wing and horizontal stabilizers, arrested hook, “navalized” avionics, auto-landing systems, retractable air refueling probe, can carry buddy container UPAZ-A Sachalin, 12 hardpoints.
Powerplant: 2x Saturn Lyul'ka AL-31F3 afterburning turbofans
Thrust – afterburner: 125.5 kN / 13,300 kgf / 28,220 lb st
Overall length: 21.185 m / 69 ft 6 in
Wing span: 14.7 m / 48 ft 2.5 in
Wing span- folded: 7.4 m
Wing area: 67.8 sq.m
Height: 5.72 m / 18 ft 9.25 in
Empty weight: 18400 kg / 40,564 lb
Normal take-off weight: 25,000 kg
Max Take-Off Weight: 33,000 kg / 72,752 lb
Internal fuel: 9,500 kg / 12,100 lt
Max warload: 6,500 kg
Max speed 11,000m / 36,000 ft: 2,300 km/h / 1,430 mph / Mach 2.165
Max speed sea level: 1,300 km/h / 807 mph / Mach 1.06
Max Mach number: 2.165
Service ceiling: 17,000 m / 55,780 ft
Max G load: 8
Range high altitude: 3,000 km
Range sea level: 1,000 km
Take-off run: 105 m carrier ramp
Landing roll: 90 m arrestd
Landing approach speed: 240 km/h
Armament: one GSh-301 30mm cannon 150 rounds
Crew: 1

Su-27KM/ Su-33M
planned navalized multi-role version of Su-27M

Su-27KU
proposed training version (seats side by side)

Su-27KUB/ Su-33UB
navalized multi-purpose combat training version, new bigger wing with area 70 sq.m (older 62 sq.m), wing span 16m (14,7m) with better aerodynamics (15-20% longer range with the same amount of fuel), bigger canards and horizontal stabilizers, radar N010-27.

Su-27KRC
proposed recon version of Su-27KUB

Su-27KPP
proposed ECM version of Su-27KUB

Su-33MK
proposed multi-role version of Su-27K for export, might be revived for China

Su-27K
Designation unknown, proposed upgrade of the Su-33 based on the Su-27SM2. Possibly the same as Su-33M. Because the Su-27SM2 is a gradual upgrade, might result in Su-33M2.

6. Multi role Su-27M series:

Su-27M/ Su-35
upgraded airframe with canards, digital FBW, bigger radome and sting, ` higher vertical fins, 14 hardpoints, retractable air refueling probe, internal fuel 10250 kg, can carry 2 drop tanks each 2000 l, upgraded avionics, radar N011, rear looking radar N012 in sting, full A-G capability, glass cocpit (3 –4 monochrome MFDs)
Powerplant: 2x AL-31FM
Thrust – afterburner: 142 kN
Overall length: 22.18 m
Wing span: 14.7 m
Wing area: 62.04 sq.m
Height: 6.43 m
Empty weight: 18,400 kg
Normal take-off weight: 25,700 kg
Internal fuel: 10,250 kg / 13,055 lt
Max warload: 8,000 kg
Max speed high altitude: 2,500 km/h
Max speed sea level: 1,400 km/h
Max Mach number: 2.35
Service ceiling: 18,000 m
Max G load: 9
Range high altitude: 3,200 km
Range sea level: 1,450 km
Range with one IFR: 6,500 km
Take-off run: 750 m
Landing roll: 600 m
Crew: 2

Su-37MR
Proposed export version of the Su-27M with French avionics for UAE. Su-27M preproduction aircraft T10M-11 served as Su-37MR demonstrator.

Su-27MP/ Su-37
ESA radar N011M, thrust vector control system, 4 colour MFDs

Su-27UM/ Su-35UB
Two-seat combat capable training version of the Su-27M aimed at export market. One prototype built, first flown on August 7, 2000. Received bort number '801'. Later fitted with Zhuk-MSE radar for testing.

7. Bomber Su-27IB series:

Su-27IB/ Su-32/ Su-34 / T-10B
completely changed airframe, seats side by side, canards, bigger sting, flat radome, main undercarriage with two tandem wheels, 12 hardpoints, ESA radar B004, rear looking radar N012 in sting, new navigation sys., internal fuel 12 100 kg, max G limit 7G, can carry 3 drop fuel tanks each with 3000 l/ 2400 kg fuel, titan armour used on cockpit, some fuel tanks and partialy engines of weight 1480 kg, fixed geometry air intakes, without air brake, without ventral fins, retractable air refueling probe, added some stealth features and RAM, digital FBW, together 6 prototypes were built (2 used only for ground tests)
Powerplant: 2x Lyulka AL-31F afterburning turbofans
Thrust – afterburner: 122.58 kN / 12,500 kgf / 27,577 lb st
Thrust – max dry: 7,770 kgf
Overall length: 23.34 m / 76 ft 6.5 in
Wing span: 14.7 m / 48 ft 3 in
Wing area: 62.04 sq.m
Height: 6.36 / 6.09 m
Empty weight: 22,500 kg
Normal take-off weight: 38,240 kg
Max take-off weight: 45000 kg / 99209 lb
Internal fuel: 12,100 kg / 15,400 lt
Max warload: 8,000 kg / 17,637 lb
Hardpoints: 12
Max speed high altitude: 1,900 km/h / 1181 mph / Mach 1.8
Max speed sea level: 1,400 km/h / 870 mph
Max Mach number: 1.8
Service ceiling: 15,000 m / 49200 ft
Max G load: 7 / 9
Range high altitude: 4,000 km / 2486 miles
Range with one IFR: 7,000 km
Take-off run: 1,260 m
Landing roll: 950 m
Armament: one GSh-301 30mm cannon with 180 rounds
Crew: 2

Su-27R
planned recon version of Su-27IB, probably the same equipment like Su-27KRC

Su-27IBP
planned ECM version of Su-27IB, probably the same equipment like Su-27KPP

Su-32FN
naval attack aircraft with SeaDragon FC system, MAD in place of N012, acoustic search system , sono buoys in pods, missiles Kh-31, Kh-35 Uran, Kh-41 Moskit, Yachont/Oniks, torpedoes, depth charges, rocket torpedos, prototype was T10V-5 introduced in FN standard in Le Bourget 1995, but was probably equipped with basic avionics

Su-32MF
proposed export version of Su-27IB

8. Chinese developed J-11 derivatives:

J-11B
Chinese developed Flanker derivative based on the Su-27SK (J-11) with 70% Chinese produced parts. Status unknown. Plans call for integration of the Chinese WS-10A turbofan. Possibly incorporating avionics from the Su-30MKK.

J-11BS
Planned two-seater version of the J-11B, probably to be developed from a Russian-supplied Su-27UBK or Su-30MKK/MK2.

Su-34MF

9. 4++ Generation Su-35 series:

Su-35 / Su-27BM

New Su-27 derivative (factory designation T-10BM) with NPO Saturn AL-41F1 (izdeliye 117S) engines and improved avionics, including the new NIIP Irbis-E radar, to be built around a rotatable passive phased array. Unveiled at MAKS 2007. First prototype designated Su-35-1 with bort number 901 first flew on February 19, 2008. Replaces the previous Su-35 (Su-27M) on the export market, retaining the Su-35 designation.
Powerplant: 2x AL-41F
Thrust – afterburner: 142.2 kN / 14,500 kgf
Thrust – max dry: 8,800 kgf
Overall length: 21.9 m
Wing span: 15.3 m
Height: 5.9 m
Normal take-off weight: 25,300 kg
Internal fuel: 11,500 kg / 14,650 lt
Max warload: 8,000 kg
Max speed high altitude: 2,400 km/h
Max speed sea level: 1,400 km/h
Max Mach number: 2.25
Max rate of climb:  >280 m/s
Service ceiling: 18,000 m
Max G load: 9
Range high altitude: 3,600 km
Range sea level: 1,580 km
Ferry range: 4,500 km
Take-off run: 400-450 m
Landing roll: 650 m
Crew: 1

Su-34P / Su-27IBP

Su-35S
Russian Air Force version of the Su-35 (T-10BM). Differs from the export Su-35 standard by having local IFF, EW, communication systems and Irbis radar with more advanced operating modes. 48 on order as interim fighter until PAK-FA, to be delivered by 2015. Series production starting in 2010.


NATO (ASIC/ASCC) reporting name:


FLANKER-B
Su-27/Su-27SK (J-11)

FLANKER-C
Su-27UB/UBK

FLANKER-D
Su-27K (Su-33)

FLANKER-E
Su-27M (Su-35, Su-37)

FLANKER-F
Su-27PU (Su-30), Su-30K, Su-30M

FLANKER-G
Su-30MKK, Su-30MK2

FLANKER-H
Su-30MKI, Su-30MKM, Su-30MKA

FULLBACK
Su-27IB (Su-32, Su-34)

Su-27 Flanker Family Events
1969 - Start research for new generation fighter by Sukhoi, Mikoyan and Yakovlev
1969 - Sukhoi made first outlines for the fighter's configuration
1970 - Initial variant of the fighter's layout worked out by Sukhoi
1971 - USSR government authorization of the Prospective Tactical Fighter (PFI) programme
1971 -Pavel Sukhoi orders official start of concept development designated T-10
1971 - Air Force issues specifications for the PFI based on F-15 data
1972 - Conceptual design finished for both 'integrated' and 'classic' aerodynamic configurations
1972 - Evaluations of PFI proposals Su-27, MiG-29, Yak-45, Yak-47
1972 - In-depth development of the conceptual design and T-10 prototype
1973 - Naum Chernyakov appointed chief designer
1975 - Basic design completed, start of prototype production by the Kulon Machine-building Plant
15 Sept 1975 - Pavel Sukhoi passed away
1976 - CPSU Central Committee and USSR government authorise Su-27 production
1976 - Mikhail Simonov appointed chief designer
1977 - Completion of T10-1 initial Su-27 prototype construction
20 May 1977 - First flight T10-1 prototype flown by Vladimir Ilyushin
Aug 1977 - Swiss magazine 'International Defense Review' reported MiG-29 prototype, but it was T10-1
Late 1977 - US satellites pictures Su-27 (coded RAM-K) and MiG-29 (coded RAM-L) at Ramenskoye (in fact GLII)
1978 - Second prototype T10-2 built
1978 - Conceptual design stage for ship-borne variant Su-27K (T-12)
7 July 1978 - T10-2 crashed, killing test pilot Yevgeny Solovyov
1978 - T10-3 and T10-4 production completed at Komsomolsk-on-Amur plant
1978 - Production of experimental batch of five Su-27 started at Komsomolsk-on-Amur plant
Mar 1979 - Final assembly T10-3 completed at Zhukovsky
Mar 1979 - Pentagon releases first information concerning the new Sukhoi
23 Aug 1979 - First flight T10-3
31 Oct 1979 - First flight T10-4
Late 1979 - T-10S improved redesign
Dec 1979 - Artyom Kolchin appointed chief designer
1980 - Production of initial T-10S prototypes T10-7, T10-12 and static T10-8
1980 - Sukhoi OKB makes T-10U twin-seat draft design
June 1980 - Komsomolsk-on-Amur completes T10-5 (No 02-02) and static test airframe No 02-01
Late 1980 - Komsomolsk-on-Amur completes T10-6 (No 02-03) and T10-9 (No 02-04)
Late 1980 - Sukhoi plant completes new design prototype T10-7 or T-10S-1 (No 04-03)
1981 - Komsomolsk-on-Amur completes T10-10 (No 03-01) and T10-11 (No 03-02)
20 April 1981 - First flight T10-7, flown by Vladimir Ilyushin
3 Sept 1981 - T10-7 crashed, Vladimir Ilyushin ejected safely
23 Dec 1981 - T10-12 crashed, killing Aleksandr Komarov
1981 - Aleksei Knyshev appointed chief designer
1982 - Komsomolsk-on-Amur delivers initial series-built T10-15, T10-16, T10-17 and static T10-14
1982 - Su-27 designation first used in Western press, NATO ASCC callsign Flanker given
2 June 1982 - First flight T10-15, series-built Su-27, by Aleksandr Isakov
24 July 1982 - T10-3 starting trials taking off from the T-1 ramp at the Nitka complex
1983 - Komsomolsk-on-Amur delivers nine more aircraft for tests and trials
1983 - Sukhoi develops improvements and upgrades for Su-27M version
21 Jan 1983 – Minister of Aircraft Industry orders conceptual design of new fighter-bomber
1983 - Conceptual design for new fighter-bomber based on Su-27UB, designated Su-27IB (factory T-10V)
29 Dec 1983 - Government authorises Su-27M development
1984 - Sukhoi and Komsomolsk-on-Amur complete Su-27UB static test model (01-01)
25 Sept 1984 - T10-25 starts trials taking off from T-2 ramp at the Nitka complex
11 Nov 1984 - T10-25 crashed, pilot Nikolai Sadovnikov ejected
1985 - Joint Offical Tests concluded
1985 - Full scale series production started
1985 - T10-1 prototype moved to Monino Air Force Museum, Moscow
1985 - Su-27M conceptual design completed
Feb 1985 - Su-27K (T-10K) ship-borne fighter conceptual design approved
7 Mar 1985 - First flight T10U-1 two-seater, flown by Nikolai Sadovnikov
22 June 1985 - First unit to receive Su-27 is PVO fighter regiment at Dzemgi AB, 20 aircraft delivered
1985 - Initial Su-27 batch enteres service with VVS
1986 - T10-24 fitted with canards starts Nitka trials
1986 - Komsomolsk-on-Amur completes T10U-2 (No 02-01) and T10U-3 (No 02-03) two-seaters
1986 - Su-27UB series production moved to Irkutsk aircraft plant
1986 - T10-15 stripped and converted to P-42 record-breaker
19 June 1986 - CPSU Central Committee and USSR Council of Ministers authorise Su-27IB production
10 Sept 1986 - First flight T10U-4, first series-produced Su-27UB, flown by G.Ye. Bulanov and N.N. Ivanov
Late 1986 - Delivery series-produced Su-27UB trainers start
27 Oct 1986 - 2x Time to climb to 3,000m set by P-42 piloted by Victor Pugachov
15 Nov 1986 - 2x Time to climb to 6,000m set by P-42 piloted by Victor Pugachov
1987 - First Su-27M prototype T10M-1 assembled on the basis of series-produced Su-27 No 16-40
1987 - Conceptual design for Su-27IB with new modifications finished
20 Jan 1987 - T10-24 crashed, pilot A. Puchkov ejected.
Mar 1987 - T10U-2 (Su-27UB prototype) fitted with IFR and arrestor hook starts Nitka trials
10 Mar 1987 - 4x Time to climb records set by P-42 piloted by Nikolay Sadovnikov
11 Mar 1987 - 3x Time to climb records set by P-42 piloted by Nikolay Sadovnikov
31 Mar 1987 - 2x Time to climb records set by P-42 piloted by Evgeny Frolov
April 1987 - First photo of series-produced Su-27 (no. 21) published in Western press
10 June 1987 – Altitude in level flight record set by P-42 piloted by Nikolay Sadovnikov
17 Aug 1987 - First flight Su-27K prototype T10K-1 (no.37), flown by Victor Pugachov
13 Sept 1987 - Su-27 (numer 36) collided with a Norwegian P-3B over the Barents Sea, both landed safely
22 Dec 1987 - First flight Su-27K second prototype T10K-2 (no.39), flown by Nikolai Sadovnikov
1988 - "Glasnost" declared in the Soviet Union
19 April 1988 - 2x Time to climb records set by P-42 piloted by Oleg Tsoi
17 May 1988 - 6x Time to climb records set by P-42 piloted by Oleg Tsoi
28 June 1988 - First flight Su-27M prototype T10M-1 (no. 701), piloted by Oleg Tsoy
Aug 1988 - Su-27 unveiled to public for the first time, taking part in air parade over Moskva river near GLII
25 Aug 1988 - First flight Su-27K prototype T10K-1 (no. 37) with folding wings
28 Sept 1988 - T10K-1 '37' crashed, Nikolai Sadovnikov ejected but deceased from trauma later
Early 1989 - Su-27 officially declassified
18 Jan 1989 - Second Su-27M prototype T10M-2 (no. 702) enters flight testing
June 1989 - Su-27 (foreign) airshow debut at Le Bourget, Paris, Su-27 '388' (T10-41) and Su-27UB '389'
19 Aug 1989 -
Su-27 taking part in Zhukovsky air parade
20 Aug 1989 - Su-27 national airshow debut at the Tushino air festival
Aug 1989 - Su-27 '22' and Su-27UB '389' exhibited at Moscow Central Airfield (Khodynka)
Aug 1989 - Su-27 '31' placed on display at National Aviation Museum
1 Nov 1989 - First deck landing of the Su-27K on the Tbilisi (Adm. Kuznetsov) aircraft carrier, pilot Victor Pugachov
2 Nov 1989 - First Su-27K take off from the Tbilisi (Adm. Kuznetsov) aircraft carrier, pilot Victor Pugachov
1989 - Sukhoi OKB begins naval combat trainer design, designated Su-27KU (T-10KU)
1989 - 'Yuri Gagarin plant' at Komsomolsk-on-Amur renamed Komsomolsk-on-Amur Aircraft Production Association (KnAAPO)
1990 - Sukhoi OKB finishes Su-27IB design and starts converting a Su-27UB
17 Feb 1990 - First flight T10K-3, first series-built Su-27K, piloted by Igor Votintsev
13 April 1990 - First flight Su-27IB prototype, T10V-1 (no. 42), piloted by Anatoly Ivanov
1990 - KnAAPO produced six more Su-27Ks, T10K-4 thru T10K-9
23 Aug 1990 - Soviet government declares Su-27 standard fighter for VVS and PVO
1990 - Su-27 Asian airshow debut at the Asian Aerospace '90 in Singapore
summer 1990 - Su-27 American airshow debut at Everett air festival near Seattle
summer 1990 - Su-27 '14' crashed in Italy, killing pilot Rimantes Stankyavicius and a security guard in the fireball
1991 - Series production of export Su-27SK for China began at KnAAPO
1991 - Series production of export Su-27UBK for China began at IAPO
1991 - Series production of twin-seat Su-30 (10-4PU) began at IAPO
Mar 1991 - Official tests of the Su-27K begin
5 April 1991 - Russian Knights aerobatic team is created, flying Su-27 and Su-27UB
11 July 1991 - T10K-8 crashed, pilot Timur Apakidze ejected safely
18 Aug 1991 - First public Su-27K demonstration during Air Fleet anniversary parade
20 Nov 1991 - First automatic arrested landing at the Nitka complex by Victor Pugachov flying the T10K-4
1992 - Break-up USSR, former CIS countries inherit combat aircraft, including Su-27
1 April 1992 - First flight T10M-3 '703', first series-produced Su-27M
14 April 1992 - First flight series produced Su-27PU (Su-30), crew G. Bulanov and V. Maksimenkov
June 1992 - First Su-27SKs delivered to China
Aug 1992 - Mosaeroshow '92 held at GLII field at Zhukovsky included LII test pilot team flying Su-27P and Su-27PU
Aug 1992 - Su-27IB unveiled at the Mosaeroshow '92 static show
1992 - Su-27M (as Su-35) unveiled at the Farnborough airshow
1993 - First Su-30 (No 01-01) converted to Su-30MK demonstrator numbered 603
April 1993 - First four Su-27K entered the inventory of the naval fighter regiment
20 May 1993 - 2x Time to climb records set by P-42 piloted by Victor Pugachov
20 May 1993 - Altitude with 1,000 kg payload record set by P-42 piloted by Victor Pugachov
20 May 1993 - Greatest mass carried to 15,000m set by P-42 piloted by Victor Pugachov
June 1993 - Su-30MK concept first unveiled at Le Bourget by Su-27UB '321' (formerly '389')
Autumn 1993 - NAPO completes T10V-2 (number 43) second Su-27IB prototype
18 Dec 1993 - First flight T10V-2 prototype, flown by Igor vitintsev and Yevgeny Revunov
Mar 1994 - Actual Su-30MK '603' first unveiled abroad at FIDAE '94 in Chile
Late 1994 - First series-built Su-34 (T10V-5) completed
Dec 1994 - Su-27K official testing program ends with recommendations to field it
28 Dec 1994 - First flight T10V-5 series-built Su-34, piloted by Yevgeny Rudakas and Yevgeny Revunov
1995 - KnAAPO starts Su-27SMK programme
1995 - Painted T10V-5 number '45' was presented at Le Bourget as Su-32FN with number '349' carried
May 1995 - First batch of five Su-27 and one Su-27UBK delivered to Vietnam
Dec 1995 - Admiral Kuznetsov carrier first ocean cruise, 13 Su-27K fighter onboard
12 Dec 1995 - Three Russian Knight fighters crashed into mountain due to adverse weather, four killed
1996 - First three production Su-35s (numbers 86, 87, 88) delivered to the Russian Air Force
1996 - Kazakhstan receives first Su-27s in return for Tu-95MS bombers
2 April 1996 - First flight Su-37 '711' with TVC engines, flown by Yevgeny Frolov
31 July 1996 - Su-37 '711' unveiled to the public at GLII
Sept 1996 - Su-37 foreign debut at Farnborough airshow
30 Nov 1996 - India and Russia sign contract for 40 Su-30MKI fighters
6 Dec 1996 - China granted approval for license production of 200 Su-27SK
Mar/Apr 1997 - First eight Su-30K delivered to India
21 June 1997 - Russian Knight '15' belly-landed (gear restracted) at SIAD 97 Air Show, Bratislava, Slovakia.
1 July 1997 - First flight first Su-30MKI '01' prototype (Su-30I-1, Su-30MK-1), flown by Vyacheslav Averyanov
Aug 1997 - Indonesia signs contract for 12 Su-30KI
Late 1997 - Indonesia cancels contract for Su-30KI
6 Dec 1997 - An-124 loaded with two Su-27UBK destined for Vietnam crashed near Irkutsk
23 April 1998 - First flight second Su-30MKI '06' prototype (Su-30MK-6, converted from T10PU-6)
28 June 1998 - First flight single-seat Su-30KI prototype (No 40-02) at KnAAPO, pilot Yevgeny Revunov
31 Aug 1998 - Su-27K service entry made official, formally redesignated Su-33.
Nov 1998 - Su-30MKI '01' first unveiled at AeroIndia '98 airshow, Bangalore
Nov 1998 - First Su-27SK (reworked RuAF Su-27) delivered to Ethiopia.
Dec 1998 - First flight two Chinese-built Su-27SK, designated J-11
1999 - Roll-out Su-27KUB naval combat trainer at Sukhoi plant
6 Jan 1999 - First Ethiopian Su-27SK loss while performing demonstration at Debrizey AB
29 April 1999 - First flight Su-27KUB prototype, pilots Victor Pugachov and Sergei Melnikov
9 May 1999 - First flight series-built Su-30MKK '501', piloted by Vyacheslav Averyanov
12 June 1999 - Su-30MKI (Su-30MK-1) '01' crashed at Le Bourget, crew ejected safely
28 July 1999 - Three altitude/weight records set by Su-32MF, crew Igor Votintsev and Aleksandr Gaivoronsky
3 Aug 1999 - Two altitude/weight records set by Su-32MF, crew Vyacheslav Petrusha and Aleksandr Oshchepkov
19 Aug 1999 - Three altitude/weight records set by Su-32MF, crew Igor Solovyov and Vladimir Shendrik
Aug 1999 - Su-30KI demonstrated at MAKS '99
Aug 1999 - KnAAPO completes series-built Su-30MKK '502'
3 Sept 1999 - First arrested Su-27KUB landing at the Nitka complex
6 Sept 1999 - First take-off Su-27KUB from Nitka ramp
6 Oct 1999 - First carrier landing and take-off Su-27KUB from Adm. Kuznetsov
Nov 1999 - Su-30KI unveiled abroad at LIMA '99 airshow in Malaysia
Dec 1999 - China signs contract for at least 20 Su-27UBKs produced by IAPO
1999 - KnAAPO recovered the name of Yuri Gagarin for its plant
20 Mar 2000 - President Putin flies Su-27UB '17' from Krasnodar to Chechnya, piloted by Aleksandr Kharchevsky
29 Mar 2000 - Five of the Su-32MF records registrered as official aviation world records
Summer 2000 - False reports of Su-27 deliveries to Syria appear in aviation press
7 Aug 2000 - First flight Su-35UB prototype (no. 801).
28 Dec 2000 - Agreement signed for local production of up to 140 Su-30MKI by HAL
22 June 2002 - First two Su-30MKIs produced by IAPO arrive in India
27 July 2002 - Ukrainian Su-27UB crashed L'vov-Sknilov airshow, two pilots ejected, 83 spectators killed, 115 injured
27 Sept 2002 - First ten Su-30MKIs enter service, with IAF No.20 Sqn
27 Dec 2002 - First flight Su-27SM, mid-life upgrade for Su-27S by KnAAPO
Jan 2003 - China signs contract for 24 Su-30MK2
5 Aug 2003 - Malaysia signs $900 million contract for 18 Su-30MKM
27 Aug 2003 - First two Su-27SK delivered to Indonesia, soon to be followed by two Su-30MK
14 Sept 2003 - First post-delivery flights of both Indonesian Su-27SK, flown by Alexander Pulenkov (Sukhoi OKB)
16 Sept 2003 - Post-delivery flight testing of Indonesian Su-30MKs completed
14 Oct 2003 - Four Lipetsk Su-27s visit Bodo (Norway), Norwegian pilots get familiarisation flights on Su-27UB
26 Dec 2003 - First five KnAAPO-upgraded Su-27SM delivered to RuAF at Lipetsk to undergo trials
Feb 2004 - First batch of Su-30MK2 delivered to China
16 Feb 2004 - IAF Su-30K meet USAF F-15C in dissimilar air combat training during Exercise Cope India 04
16 Mar 2004 - First Chinese Su-30MK2 crash, pilot ejected safely
16 Aug 2004 - Su-33s return to Admiral Kuznetsov carrier after its 4-year overhaul
Nov 2004 - KnAAPO delivers four Su-30MK2V to Vietnam ordered in late 2003
28 Nov 2004 - HAL completes first indigenously assembled Su-30MKI for Indian Air Force
Dec 2004 - First batch of upgraded Su-27SMs entered service
Feb 2006 - India orders 18 Su-30MKI to replace the 18 Su-30K.
2 July 2006 - Two KnAAPO-owned Su-30MK demonstrators (501 and 502) arrive in Venezuela for demonstration.
5 July 2006 - Two Su-30MK demonstrators take part in Independence Day celebrations in Caracas, Venezuela.
6 July 2006 - First production version Su-34 rolled out by NAPO.
25 July 2006 - Venezuela orders 24 Su-30MK2 for the Venezuelan Air Force (Su-30MKV).
12 Oct 2006 - First flight first production Su-34.
30 Nov 2006 - First delivery of two Su-30MKV for the Venezuelan Air Force.
10 Dec 2006 - FAV Su-30MKVs make public debut in Venezuela during the independence day parade.
14 Dec 2006 - First two Su-30MKM completed and flight-tested.
15 Dec 2006 - Official handover first two production Su-34s ('Red 01' 'Red' 02) for RuAF trials.
20 Dec 2006 - Second pair of Su-30MKVs arrived in Venezuela.
23 Feb 2007 - Mexican Navy announces decision to abandon Su-27 acquisition plans.
24 May 2007 - First two Su-30MKM officially handed over to the Royal Malaysian Air Force in Irkutsk.
18 Jun 2007 - First two Su-30MKM arrive in Malaysia, delivered at Kong Kedak Air Base by an An-124-100.
28 Jun 2007 - Six IAF Su-30MKIs deploy to the UK to train with the RAF in Exercise Indradhanush II.
Aug 2007 - KnAAPO completes first new Su-35 prototype, bort number 901.
3 Aug 2007 - First production Su-34 joins the 4th TsBP I PLS at Lipetsk to undergo operational evaluation.
9 Aug 2007 - Announcement that Sukhoi completed design of new PAK-FA fifth-generation Su-27 replacement, KnAAPO will start production of a first prototype, anticipated to fly in 2009.
21 Aug 2007 - Sukhoi/KnAAPO unveil new Su-35 (Su-27BM) at MAKS 2007.
21 Aug 2007 - Indonesia signs MOU for delivery of three Su-27SKM and three Su-30MK2 in 2008-2010.
14 Jan 2008 - Sukhoi announces start of Su-34 full-rate production by NAPO.
19 Feb 2008 - First flight Su-35 '901', flown by Sergey Bogdan at Zhukovsky.
2 Oct 2008 - First flight Su-35 '902', flown by Sergey Bogdan from KnAAPO factory airfield at Komsomol'sk-na-Amur.
12 Nov 2008 - Rosoboronexport announces Indonesia deal for three Su-27SKM and three Su-30MK2 has been finalised.
26 Dec 2008 - First two Su-30MK2 for Indonesia arrive at Saltan Hassanuddin air base, Makassar.
17 Jan 2009 - Third and final Indonesian Su-30MK2 ordered on 21 Aug 2007 arrives.
2 Feb 2009 - Indonesia officially accepts the three Su-30MK2 ordered on 21 Aug 2007.

su-27-ld
Sukhoi Su-27




su-30-ld
Sukhoi Su-30




su-34-ld
Sukhoi Su-34

 

 

 

 


Copyright © 2017 all-aero. All Rights Reserved.
Joomla! is Free Software released under the GNU General Public License.