Main Menu

Stoddard Hamilton Glasair III / T-9 Stalker

sh-glassair3


1986 marked the introduction of the Glasair III, two-place sportplane on the planet. Powered by its 300 h.p. Lycoming IO-540 to cruise speeds in excess of 265 m.p.h., the kit featured all the new labor-saving innovations of the Glasair II kits.

The Glasair III Aircraft kit includes virtually everything you need to complete the airframe, including cowling and engine mount. You supply the powerplant, propeller, upholstery, paint, instruments, avionics and electrical system. In 1988 the price, less engine, instruments, prop, and upholstery, was US$32,500.

People who have shopped around and compared the Glasair with other kits have discovered that the precision fit of Glasair parts, the degree of completion of small parts or subsystems and the attention to details in the assembly process make the Glasair kits truly fast to build. The aircraft is assembled from preformed composite shells. This process assures accuracy and virtually eliminates the need for any complex jigging fixtures.

The resin used on the Glasair is a type of vinylester resin that has a maximum heat distortion temperature of 300 degrees F. Vinylester resins offer a number of advantages and benefits over epoxy-based systems. Some of these benefits include: superior secondary bonding characteristics, avoidance of skin sensitivity problems, longevity and reliability.

All welding is factory finished and protective coated. All Glasair fabricated metal components are already machined or formed and are coated per military or aerospace specifications for maximum corrosion resistance.
The fuselage comes in two large half-shells and three belly sections. Recessed flanges at the fuselage/cowl split line are designed to be stronger and make installation easier, creating a perfectly flush cowling. Piano hinges and Camloc fasteners are used to allow easy cowling removal for engine inspection. There are molded scribe lines for the wing and horizontal stabilizer cutouts, eliminating the guesswork and time involved in layout and measuring.

Low drag NACA-style cabin air vents are included, which are easily installed by the builder. Fuselage shells feature factory molded longerons sandwiched between the skins that substantially increases the strength and bending stiffness of the fuselage. Precision recesses accommodate windshield, canopies, and rear window installations. 

 

Stod-Glas-pit

 

Wing configuration is designed for the widest possible range of high and low speed operations. Dimensionally, the Super II and III wings are identical. Structurally, they vary to accommodate different weight and speed envelopes. Glasairs are not subject to the high speed stalls, hot approaches and long rollouts that characterize most high performance aircraft. Short, grass or gravel field capability were a must in designing the Glasair. The wings were designed to achieve slow speed performance and maintain good penetration in turbulence over 200 mph. They also achieve a good degree of laminar flow, yet have no undesirable characteristics when flying through rain.

The one-piece wing incorporates solid fare and aft I-beam spars spanning wingtip to wingtip, eliminating failure modes associated with three piece wing designs. Both spars have sturdy, machined attach fittings that fasten the wing to the fuselage, enabling removal of the wing to facilitate repair, inspection, or when transporting the aircraft to the airport for the initial flight.

 

SH-Glas3-04

 

Both Glasair models have time-saving premolded recessed attach flanges for the inspection covers and wing tips. The fuel sump is premolded into the lower wing skin and the seat pan cut-out area is scribed for easy removal. The Glasair III comes with molded gear door flanges to insure an accurate flush door fit. 


Wing tips for the Super II and III have an upswept Hoerner-type trialing edge to provide improved lateral stability and to reduce induced drag. The tips feature premolded, recessed flanges for the red and green navigation light lenses which easily bond to the flange and fit flush with the external surface.

Wing tip extensions add approximately 24 inches to each side, increasing the wing aspect ratio. In 20 minutes you can change from extended wing tips to standard tips. Economy cruise performance at 17,500 feet increases by 7 mph and stall speed drops by about 6 mph. Climb performance increases by 150 fpm and roll stability is improved.

Time-saving features have been implemented into the Glasair Super II and III empennage sections. The horizontal stabilizer and elevator are formed in separate molds with matching elevator counterweight cutouts molded into the horizontal parts. Horizontals for the Glasair III are a carbon graphite fiber/E glass hybrid for appropriate stiffness.

The elevators are manufactured with factory reinforced molded counterweight arms for necessary strength requirements. They are installed using centerline hinging which provides a symmetrical airfoil when the elevator is deflected either upwards or downwards. An independent manual trim system provides elevator back-up control and works on a simple worm gear mechanism. An optional electric trim is also available for all models. 


Rudders for the Super II and III have premolded counterweight arms which match perfectly to the vertical fin for a close, low-drag fit. Tail light assemblies are also premolded into the rudder parts.

Glasairs use a conventional, three-axis, dual stick control system for pitch and roll, and dual rudder pedals for yaw. Mechanical or optional electric slotted flaps are employed for slow flight and can be set from 0 to 34 degrees. Solid push-pull tube linkages are used between the cockpit controls and the control surfaces themselves. Aircraft grade self-aligning rod and bearings used with the solid linkages give the Glasair smooth, positive control response. Stainless steel cables link the foot pedals to the rudder. 

 

Stod-Glas3-2

 

The slotted flap installation reduces stall speed by 6 mph, reduces landing and takeoff roll, significantly improves landing visibility during approach, reduces approach speeds, and increases maximum flap speed from 120 to 140 mph.

Both the ailerons and flaps are designed to allow tight surface gaps thus reducing drag even further. These controls are hinged on the lower surface with extruded aircraft piano type hinge.

There are two fuel tanks in the Glasair: one main tank in the front D-section of the wing and a header tank aft of the firewall. An engine driven mechanical fuel pump and an electric auxiliary pump supply fuel to the carburetor or fuel injector. The Glasair III has additional fuel bays in the wing, allowing greater fuel capacity. Tank baffles and one-way valves are installed to prevent fuel sloshing. Fuel sumps with drains are located at the bottom of each tank. The fuel vent system includes fuel vent float valves that help prevent fuel spills while parked on uneven ground or while flying inverted during aerobatics. Glasairs include the complete fuel system from fuel tanks to the carburetor or fuel injector in the kit.

Nontoxic Rohacell foam is used as the core material in the composite firewall bulkhead. A one-half inch thick sheet of ceramic fiber insulation, which is protected from engine oils by a lightweight alumimum sheet, provides fireproofing and noise insulation on the forward side of the firewall. This firewall withstood the FAR Part 23 2000 degrees F 15-minute burn test.

Both Glasair II and III models feature a dual gullwing canopy system. The canopy frames are supplied premolded and factory assembled to form lightweight, rigid frames.

S-H introduced the Glasair III Turbo in 1990. A complete firewall-forward package, this option pushed the standard Glasair III airframe up into the Flight Levels at speeds of well over 300 m.p.h.

The Glasair III LP was displayed at the NASA exhibit in Oshkosh in 1993. The result of S-H’s participation in a NASA-funded Small Business Innovation Research (SBIR) grant, the LP was the first lightning-protected composite kit aircraft. Under the terms of the SBIR grant, the research results produced in the course of this project became part of the public domain, and future certified composite aircraft such as the Cirrus and the Kestrel utilize technology based on S-H’s findings. S-H continues to participate in several other SBIR grants and NASA advanced research programs on such topics as composite manufacturing techniques and aircraft crashworthiness.

The Glasair III Prop Jet also debuted at Oshkosh ‘94. Built by Composite Turbine Tech, Inc., of Toledo, Washington, this aircraft mated a 450 s.h.p. Allison 250 B-17 turbine engine to a standard Glasair III airframe with a larger rudder.

Kits for both the III and the Super II underwent upgrades in  1995, as previously optional equipment was incorporated into the standard kits. Ever-increasing degrees of factory prefabrication, part quality and kit completeness continue to be the hallmark of the Glasair line.

Following a sophisticated computational fluid dynamics analysis of its aerodynamic qualities at speeds in the Mach .6–.7 range, the Glasair III got an enlarged rudder, a new cowling and a mighty turbocharger to become the Glasair Super III in 1998. Designed to produce 350 h.p. at altitudes of up to 37,000 feet, the new powerplant testing on the prototype had been flown to 35,000 feet at airspeeds of greater than 320 knots. At 32,000 feet, the aircraft was still capable of climbing at over 2,000 feet per minute.

 

SH-Glas3-03

 

Original manufacturer of the Glasair and Glastar, Stoddard Hamilton closed its doors in 2000 after more than 20 years in business. Both aircraft types were split from the Stoddard Hamilton camp when the closure occurred.

Thomas W. Wathen, former Chairman and CEO of Pinkerton's, Inc., purchased the assets of Stoddard-Hamilton and AADI and formed Glasair Aviation, LLC in 2001 for the continued manufacturing and sale of both the Glasair and Glastar product lines.

New owner Thomas Walthem was committed to getting all three kits back into production. He initially purchased the Glasair side of the business but after finding the overheads of the line were not self supporting approached Arlington Aircraft Development Inc (AADI) to purchase the GlaStar line. As a single entity, the Glasair and Glastar kit aircraft under the banner of New Glasair/GlaStar.

In 2009 still produced kits to construct the Turbine 250/III turboprop two-seater, and T-9 Stalker two-seat turboprop variant of Glasair III as trainer (first flown 1988).

Glasair III
Engine: Lycoming IO-540, 300 h.p.
Top Speed (sea level): 300 mph / 260 knots
Cruise Speeds (TAS) 75% at 8,000 ft: 258 mph / 224 knots
Cruise Speeds (TAS) 65% at 8,000 ft: 248 mph / 216 knots
Stall Speeds (Solo) Slotted Flaps: 73 mph / 63 knots
Stall Speeds (Solo) Standard Flaps: 80 mph / 69 knots
Best Rate of Climb Speed: 130 mph / 113 knots
Best Angle of Climb Speed: 100 mph / 87 knots
Maneuvering Speed: 201 mph / 174 knots
Never Exceed Speed (Vne): 335 mph / 291 knots
Rate of Climb Solo Weight: 2990 ft/min
Rate of Climb Gross Weight: 2140 ft/min
Rate of Climb Gross Weight: 2140 ft/min
Roll Rate Standard Wing: 140 deg/sec
Roll Rate Extended Wing: 90 deg/sec
Range Standard Fuel VFR Res: 1219 mi / 1060 nm
Range Extended Fuel VFR Res: 1421 mi / 1236 nm
Service Ceiling: 24,000 ft
Fuselage Length: 21.3 ft
Wing Span (Standard): 23.3 ft
Wing Span (Extended): 27.3 ft
Maximum Height: 7.5 ft
Cabin Width: 42 in
Fuel Capacity (usable) Main Tank (Wing): 65 USgal
Fuel Capacity (usable) Header Tank: 8 USgal
Fuel Capacity (usable) Wing Tip Extensions: 11 USgal
Baggage Weight: 100 lbs
Baggage Space: 12 cu ft
Wing Area: 81.3 sq ft
Wing Tip Extension Area: 10.2 sq ft
Aspect Ratio: 6.20
Aspect Ratio/Tip Extension: 7.64
G-Limits (2,120lbs/Aerobatic): +6/-4 G's
Ultimate Loads: +9/-6 G's
Empty Weight: 1,625 lbs
Gross Weight Standard Wing: 2,400 lbs
Gross Weight Extended Wing: 2,500 lbs
Seats: 2
Landing gear: retractable nose wheel  
Take-off dist: 700 ft
Landing dist: 900 ft

Glasair Turbo III
Engine: Lycoming TIO-540, 300 h.p.
Top Speed (sea level): 300 mph / 260 knots
Top Speed (18,000 ft.): 327 mph / 284 knots (turbo)
Cruise Speeds (TAS) 75% at 24,000 ft: 313 mph / 272 knots
Cruise Speeds (TAS) 75% at 17,500 ft: 290 mph / 252 knots
Stall Speeds (Solo) Slotted Flaps: 73 mph / 63 knots
Stall Speeds (Solo) Standard Flaps: 80 mph / 69 knots
Best Rate of Climb Speed: 130 mph / 113 knots
Best Angle of Climb Speed: 100 mph / 87 knots
Maneuvering Speed: 201 mph / 174 knots
Never Exceed Speed (Vne): 335 mph / 291 knots
Rate of Climb Solo Weight: 2990 ft/min
Rate of Climb Gross Weight: 2140 ft/min
Roll Rate Standard Wing: 140 deg/sec
Roll Rate Extended Wing: 90 deg/sec
Range Standard Fuel VFR Res: 1219 mi / 1060 nm
Range Extended Fuel VFR Res: 1421 mi / 1236 nm
Service Ceiling: 30,000+ ft
Fuselage Length: 21.3 ft
Wing Span (Standard): 23.3 ft
Wing Span (Extended): 27.3 ft
Maximum Height: 7.5 ft
Cabin Width: 42 in
Fuel Capacity (usable) Main Tank (Wing): 65 USgal
Fuel Capacity (usable) Header Tank: 8 USgal
Fuel Capacity (usable) Wing Tip Extensions: 11 Usgal
Baggage Weight: 100 lbs
Baggage Space: 12 cu ft
Wing Area: 81.3 sq ft
Wing Tip Extension Area: 10.2 sq ft
Aspect Ratio: 6.20
Aspect Ratio/Tip Extension: 7.64
G-Limits (2,120lbs/Aerobatic): +6/-4 G's
Ultimate Loads: +9/-6 G's
Empty Weight: 1,625 lbs
Gross Weight Standard Wing: 2,400 lbs
Gross Weight Extended Wing: 2,500 lbs
Seats: 2
Landing gear: retractable nose wheel  
Take-off dist: 700 ft
Landing dist: 900 ft

Turbine 250 / III
Engine: Allison 250, 450 hp
Height: 7.5 ft
Length: 22 ft
Wing span: 23.3 ft
Wing area: 81.3 sq.ft
Fuel cap: 86 USG
Weight empty: 1650 lbs
Gross: 2500 lbs
Speed max: 330 mph
Cruise: 280 mph
Range: 1200 sm
Stall: 73 mph
ROC: 4200 fpm
Take-off dist: 600 ft
Landing dist: 1000 ft
Service ceiling: 25,000 ft
Seats: 2
Landing gear: retractable nose wheel

 

Engine: Lycoming, 300 hp
Wing span: 7.1 m
Wing area: 7.48 sq.m
MAUW: 1134 kg
Empty weight: 737 kg
Fuel capacity: 273 lt
Max speed: 473 kph
Cruise speed: 418 kph
Minimum speed: 101 kph
Climb rate: 17 m/s
Seats: 2
Fuel consumption: 60 lt/hr
Kit price (1998): $28,900-$37000
 
 

 

 

 


Copyright © 2017 all-aero. All Rights Reserved.
Joomla! is Free Software released under the GNU General Public License.